A316202 Number of integer partitions of n into Fermi-Dirac primes.
1, 0, 1, 1, 2, 2, 3, 4, 5, 7, 8, 11, 13, 17, 20, 25, 31, 37, 45, 54, 65, 77, 92, 109, 128, 152, 177, 208, 242, 283, 327, 380, 439, 506, 583, 669, 768, 878, 1004, 1144, 1303, 1482, 1681, 1906, 2156, 2438, 2750, 3101, 3490, 3924, 4407, 4942, 5538, 6197, 6929
Offset: 0
Keywords
Examples
The a(12) = 13 integer partitions of 12 into Fermi-Dirac primes: (75), (93), (444), (543), (552), (732), (3333), (4332), (4422), (5322), (33222), (42222), (222222).
Programs
-
Mathematica
nn=60; FDpQ[n_]:=With[{f=FactorInteger[n]},n>1&&Length[f]==1&&MatchQ[FactorInteger[2f[[1,2]]],{{2,_}}]] FDprimeList=Select[Range[nn],FDpQ]; ser=Product[1/(1-x^d),{d,FDprimeList}]; Table[SeriesCoefficient[ser,{x,0,n}],{n,0,nn}]
Formula
O.g.f.: Product_d 1/(1 - x^d) where the product is over all Fermi-Dirac primes (A050376).
Comments