A316211 Number of strict integer partitions of n into Fermi-Dirac primes.
1, 0, 1, 1, 1, 2, 1, 3, 1, 4, 2, 4, 4, 4, 6, 4, 9, 5, 10, 8, 11, 11, 12, 15, 13, 19, 16, 21, 21, 24, 26, 27, 32, 31, 37, 37, 42, 44, 47, 52, 53, 61, 61, 69, 71, 78, 82, 88, 95, 99, 108, 112, 122, 128, 137, 144, 154, 163, 172, 184, 193, 206, 216, 230, 242, 256
Offset: 0
Keywords
Examples
The a(16) = 9 strict integer partitions of 16 into Fermi-Dirac primes: (16), (9,7), (11,5), (13,3), (7,5,4), (9,4,3), (9,5,2), (11,3,2), (7,4,3,2).
Crossrefs
Programs
-
Mathematica
nn=60; FDpQ[n_]:=With[{f=FactorInteger[n]},n>1&&Length[f]==1&&MatchQ[FactorInteger[2f[[1,2]]],{{2,_}}]] FDprimeList=Select[Range[nn],FDpQ]; ser=Product[1+x^d,{d,FDprimeList}]; Table[SeriesCoefficient[ser,{x,0,n}],{n,0,nn}]
Formula
O.g.f.: Product_d (1 + x^d) where the product is over all Fermi-Dirac primes (A050376).
Comments