cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A316219 Number of triangles of weight prime(n) in the multiorder of integer partitions of prime numbers into prime parts.

This page as a plain text file.
%I A316219 #12 Jan 16 2023 23:10:52
%S A316219 1,1,3,6,15,31,92,161,464,2347,3987,18202,50136,81722,214976,903048,
%T A316219 3684567,5842249,23206424,57341256,89938662,343306266,829972421,
%U A316219 3084219358,17375700038,40920517008,62656899579,146415515992,223442878751,518427758704,9544240589455,21746920337606
%N A316219 Number of triangles of weight prime(n) in the multiorder of integer partitions of prime numbers into prime parts.
%C A316219 A prime partition is an integer partition of a prime number into prime parts. Then a(n) is the number of sequences of prime partitions whose sums are weakly decreasing and sum to the n-th prime number.
%H A316219 Andrew Howroyd, <a href="/A316219/b316219.txt">Table of n, a(n) for n = 1..1000</a>
%H A316219 Gus Wiseman, <a href="https://docs.google.com/document/d/1m0s6DGTBkDW9gvMuFmJHvy6oLGRAbQ7okAZcOPZawp0/pub">Comcategories and Multiorders</a>
%H A316219 Gus Wiseman, <a href="/A316219/a316219.png">Illustration of the first five terms of A316219.</a>
%t A316219 nn=20;
%t A316219 pen[n_]:=pen[n]=SeriesCoefficient[Product[1/(1-x^p),{p,Select[Range[n],PrimeQ]}],{x,0,n}]
%t A316219 Table[Sum[Times@@pen/@p,{p,Select[IntegerPartitions[Prime[n]],And@@PrimeQ/@#&]}],{n,nn}]
%o A316219 (PARI)
%o A316219 P(n,f)={1/prod(k=1, n, 1 - f(k)*x^prime(k) + O(x*x^prime(n)))}
%o A316219 seq(n)={my(p=P(n, i->1), q=P(n, i->polcoef(p, prime(i)))); vector(n, k, polcoef(q, prime(k)))} \\ _Andrew Howroyd_, Jan 16 2023
%Y A316219 Cf. A000040, A000041, A000607, A056768, A063834, A100118, A269134, A281113, A316220.
%K A316219 nonn
%O A316219 1,3
%A A316219 _Gus Wiseman_, Jun 26 2018
%E A316219 Terms a(16) and beyond from _Andrew Howroyd_, Jan 16 2023