A316221 Let S(n) = set of divisors of n, excluding n; sequence gives n such that there is a unique relatively prime subset of S(n) that sums to n.
6, 12, 18, 20, 28, 42, 54, 56, 66, 88, 100, 104, 162, 176, 196, 208, 272, 304, 368, 414, 460, 464, 486, 490, 496, 500, 558, 572, 580, 650, 666, 726, 736, 748, 812, 820, 868, 928, 968, 992, 1036, 1148, 1184, 1204, 1312, 1316, 1352, 1372, 1376, 1458, 1484, 1504
Offset: 1
Keywords
Examples
6=1+2+3, 12=1+2+3+6, 18=1+2+6+9, 20=1+4+5+10, 28=1+2+4+7+14, 42=1+6+14+21.
Programs
-
Mathematica
ric[r_, g_, p_] := Block[{v}, If[r==0, If[g==1, c++], If[c<2 && Total@p >= r, ric[r, g, Rest@ p]; v = p[[1]]; If[r>=v, ric[r-v, GCD[g, v], Rest@ p]]]]]; ok[n_] := DivisorSigma[1, n] >= 2 n && (c = 0; ric[n, n, Reverse@ Most@ Divisors@ n]; c == 1); Select[ Range[2000], ok] (* Giovanni Resta, Jun 27 2018 *)
Extensions
More terms from Giovanni Resta, Jun 27 2018
Comments