A316261 The number of ways to induce a single pinch on a compact 2-manifold with n handles. (Note: The manifold is embedded in Euclidean 2-space, and each pinch partitions it into at most two submanifolds.)
1, 3, 9, 15, 26, 37, 55, 73, 100, 127, 165, 203, 254, 305, 371, 437, 520, 603, 705, 807, 930, 1053, 1199, 1345, 1516, 1687, 1885, 2083, 2310, 2537, 2795, 3053, 3344, 3635, 3961, 4287, 4650, 5013, 5415, 5817, 6260
Offset: 0
Examples
For a visual example see links.
References
- Jonathan L. Gross, Jay Yellen, and Ping Zhang, The Handbook of Graph Theory (Second Edition), CRC Press, 2013, pp. 730-806.
- Ana Claudia Nabarro, Juan J. Nuño-Ballesteros, Raúl Oset Sinha, Maria Aparecida Soares Ruas, Contemporary Mathematics: Real and Complex Singularities, American Mathematical Soc., 2014, pp. 50-51.
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Jonathan L. Gross, Jay Yellen, and Ping Zhang, The Handbook of Graph Theory (Second Edition)
- Allen Hatcher, Algebraic Topology (Ch. 0)
- Ana Claudia Nabarro, Juan J. Nuño-Ballesteros, Raúl Oset Sinha, Maria Aparecida Soares Ruas, Contemporary Mathematics: Real and Complex Singularities
- Pseudomanifold. The Encyclopedia of Mathematics
- Joseph Wheat, Visual Example of n = 3
- Index entries for linear recurrences with constant coefficients, signature (2,1,-4,1,2,-1).
Crossrefs
Cf. A087811.
Programs
-
Mathematica
a[n_] := (2 n^3 + 12 n^2 + 73 n + 3 (n + 2)*(-1)^n - 6)/24 + ((-1)^(2^n - 1) + 1)/2; Array[a, 50, 0] (* or *) CoefficientList[ Series[(x^6 + x^5 - 2x^4 - 2x^3 + 2x^2 + x + 1)/((x - 1)^4 (x + 1)^2), {x, 0, 50}], x] (* Robert G. Wilson v, Jul 23 2018 *)
-
PARI
Vec((1 + x + 2*x^2 - 2*x^3 - 2*x^4 + x^5 + x^6) / ((1 - x)^4*(1 + x)^2) + O(x^50)) \\ Colin Barker, Jul 05 2018
Formula
a(n) = (2*n^3 + 12*n^2 + 73*n + 3*(n + 2)*(-1)^n - 6)/24 + ((-1)^(2^n - 1) + 1)/2.
From Colin Barker, Jul 05 2018: (Start)
G.f.: (1 + x + 2*x^2 - 2*x^3 - 2*x^4 + x^5 + x^6) / ((1 - x)^4*(1 + x)^2).
a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6) for n>6.
(End)
Comments