cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A316262 Numbers k such that gcd(k, floor(phi*k)) > 1, where phi is the golden ratio.

This page as a plain text file.
%I A316262 #23 Aug 10 2022 22:35:45
%S A316262 4,6,8,10,14,15,20,21,24,25,26,30,35,36,39,40,45,46,50,52,54,55,56,62,
%T A316262 65,66,68,69,72,76,78,82,84,88,90,91,92,93,94,98,102,104,108,114,117,
%U A316262 118,120,124,126,130,132,134,136,140,141,143,144,146,147,150
%N A316262 Numbers k such that gcd(k, floor(phi*k)) > 1, where phi is the golden ratio.
%e A316262 2 divides both 4 and floor(phi*4)=6, so 4 is a term.
%p A316262 select(n->gcd(n,floor(((sqrt(5)-1)/2)*n))>1,[$1..160]); # _Muniru A Asiru_, Jun 28 2018
%t A316262 Select[Range[150], GCD[#, Floor[GoldenRatio #]] > 1 &] (* _Giovanni Resta_, Jun 28 2018 *)
%o A316262 (PARI) is(n) = gcd(n, floor((sqrt(5)-1)/2*n)) > 1 \\ _Felix Fröhlich_, Jun 29 2018
%o A316262 (Python)
%o A316262 from math import gcd, isqrt
%o A316262 from itertools import count, islice
%o A316262 def A316262_gen(startvalue=1): # generator of terms >= startvalue
%o A316262     return filter(lambda n:gcd(n,n+isqrt(5*n**2)>>1)>1,count(max(startvalue,1)))
%o A316262 A316262_list = list(islice(A316262_gen(),30)) # _Chai Wah Wu_, Aug 10 2022
%Y A316262 Cf. A000201, A001622.
%K A316262 nonn
%O A316262 1,1
%A A316262 _David V. Feldman_, Jun 27 2018