This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A316265 #6 Jun 29 2018 11:35:18 %S A316265 1,3,4,7,11,12,19,21,25,28,33,41,44,47,57,61,75,76,77,83,84,97,100, %T A316265 121,123,132,133,139,141,151,164,169,175,183,188,197,209,228,231,233, %U A316265 241,244,249,271,275,287,289,291,300,307,308,329,332,347,361,363,388 %N A316265 FDH numbers of strict integer partitions with prime parts. %C A316265 Let f(n) = A050376(n) be the n-th Fermi-Dirac prime. The FDH number of a strict integer partition (y_1,...,y_k) is f(y_1)*...*f(y_k). %e A316265 Sequence of strict integer partitions with prime parts, preceded by their FDH numbers, begins: %e A316265 1: () %e A316265 3: (2) %e A316265 4: (3) %e A316265 7: (5) %e A316265 11: (7) %e A316265 12: (3,2) %e A316265 19: (11) %e A316265 21: (5,2) %e A316265 25: (13) %e A316265 28: (5,3) %e A316265 33: (7,2) %e A316265 41: (17) %e A316265 44: (7,3) %e A316265 47: (19) %e A316265 57: (11,2) %e A316265 61: (23) %e A316265 75: (13,2) %e A316265 76: (11,3) %e A316265 77: (7,5) %e A316265 83: (29) %e A316265 84: (5,3,2) %t A316265 nn=100; %t A316265 FDfactor[n_]:=If[n==1,{},Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>Power[p,Cases[Position[IntegerDigits[k,2]//Reverse,1],{m_}->2^(m-1)]]]]]; %t A316265 FDprimeList=Array[FDfactor,nn,1,Union];FDrules=MapIndexed[(#1->#2[[1]])&,FDprimeList]; %t A316265 Select[Range[nn],And@@PrimeQ/@(FDfactor[#]/.FDrules)&] %Y A316265 Cf. A000586, A045450, A050376, A064547, A213925, A299755, A299757, A316185, A316266, A316267. %K A316265 nonn %O A316265 1,2 %A A316265 _Gus Wiseman_, Jun 28 2018