cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A316267 FDH numbers of strict integer partitions of prime numbers with a prime number of prime parts.

Original entry on oeis.org

12, 21, 57, 123, 249, 417, 532, 699, 867, 1100, 1389, 1463, 1509, 1708, 2049, 2068, 2307, 2324, 2913, 3116, 3147, 3157, 3273, 3325, 3619, 3903, 4227, 4268, 4636, 4821, 5079, 5225, 5324, 5516, 5739, 6308, 6391, 6524, 6621, 6644, 7469, 8092, 8193, 8225, 8457
Offset: 1

Views

Author

Gus Wiseman, Jun 28 2018

Keywords

Comments

Let f(n) = A050376(n) be the n-th Fermi-Dirac prime. The FDH number of a strict integer partition (y_1,...,y_k) is f(y_1)*...*f(y_k).

Examples

			Sequence of strict integer partitions of prime numbers with a prime number of prime parts, preceded by their FDH numbers, begins:
    12: (3,2)
    21: (5,2)
    57: (11,2)
   123: (17,2)
   249: (29,2)
   417: (41,2)
   532: (11,5,3)
   699: (59,2)
   867: (71,2)
  1100: (13,7,3)
  1389: (101,2)
  1463: (11,7,5)
  1509: (107,2)
  1708: (23,5,3)
		

Crossrefs

Programs

  • Mathematica
    nn=1000;
    FDfactor[n_]:=If[n==1,{},Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>Power[p,Cases[Position[IntegerDigits[k,2]//Reverse,1],{m_}->2^(m-1)]]]]];
    FDprimeList=Array[FDfactor,nn,1,Union];FDrules=MapIndexed[(#1->#2[[1]])&,FDprimeList];
    Select[Range[nn],And[PrimeQ[Total[FDfactor[#]/.FDrules]],PrimeQ[Length[FDfactor[#]]],And@@PrimeQ/@(FDfactor[#]/.FDrules)]&]