A316271 FDH numbers of strict non-knapsack partitions.
24, 40, 70, 84, 120, 126, 135, 168, 198, 210, 216, 220, 231, 264, 270, 280, 286, 312, 330, 351, 360, 364, 378, 384, 408, 416, 420, 440, 456, 462, 504, 520, 528, 540, 544, 546, 552, 560, 576, 594, 600, 616, 630, 640, 646, 660, 663, 680, 696, 702, 728, 744, 748
Offset: 1
Keywords
Examples
a(1) = 24 is the FDH number of (3,2,1), which is not knapsack because 3 = 2 + 1.
Crossrefs
Programs
-
Mathematica
nn=1000; sksQ[ptn_]:=And[UnsameQ@@ptn,UnsameQ@@Plus@@@Union[Subsets[ptn]]]; FDfactor[n_]:=If[n==1,{},Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>Power[p,Cases[Position[IntegerDigits[k,2]//Reverse,1],{m_}->2^(m-1)]]]]]; FDprimeList=Array[FDfactor,nn,1,Union];FDrules=MapIndexed[(#1->#2[[1]])&,FDprimeList]; Select[Range[nn],!sksQ[FDfactor[#]/.FDrules]&]
Comments