cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A316290 a(n) is the number of ways of writing prime(n) as the sum of a prime number and a number that has only prime factors 2 and/or 5.

This page as a plain text file.
%I A316290 #27 Aug 11 2018 20:38:42
%S A316290 0,1,1,3,2,3,2,3,4,2,3,3,2,4,4,4,2,5,4,4,4,4,6,2,3,3,6,5,5,5,3,4,4,6,
%T A316290 2,5,4,4,7,5,4,6,4,3,5,6,5,3,5,6,4,5,5,3,5,6,4,6,5,5,5,6,4,5,6,6,5,4,
%U A316290 5,5,6,4,6,4,5,6,5,5,4,5,4,5,6,6,6,6,6
%N A316290 a(n) is the number of ways of writing prime(n) as the sum of a prime number and a number that has only prime factors 2 and/or 5.
%C A316290 Prime(n) stands for the n-th prime.
%C A316290 a(58899)=0, which is the first zero after a(1)=0.
%C A316290 First occurrence of k=1,2,3,...: 1, 2, 5, 4, 9, 18, 23, 39, 105, 202, 236, 321, 730, 820, ..., . - _Robert G. Wilson v_, Aug 01 2018
%e A316290 For n=2, the 2nd prime is 3, 3-1=2 is prime. This is the only case. So a(2)=1;
%e A316290 ...
%e A316290 For n=4, the 4th prime is 7, 7-2=5, 7-4=3, and 7-5=2 are prime. So a(4)=3;
%e A316290 ...
%e A316290 For n=9, the 9th prime is 23, 23-4=19, 23-10=13, 23-16=7, 23-20=3, 4 valid numbers found, so a(9)=4.
%p A316290 A316290 := proc(n)
%p A316290     local pri,a,p,k ;
%p A316290     pri := ithprime(n) ;
%p A316290     a := 0 ;
%p A316290     p := 2;
%p A316290     while p < pri do
%p A316290         k := pri-p ;
%p A316290         if nops(numtheory[factorset](k) minus {2,5}) = 0 then
%p A316290             a := a+1 ;
%p A316290         end if;
%p A316290         p := nextprime(p) ;
%p A316290     end do:
%p A316290     a ;
%p A316290 end proc:
%p A316290 seq(A316290(n),n=1..30) ; # _R. J. Mathar_, Aug 03 2018
%t A316290 g = {1}; Table[p = Prime[n]; While[l = Length[g]; g[[l]] < p, pos = l + 1; While[pos--; c2 = g[[pos]]*2; c2 > g[[l]]]; c2 = g[[pos + 1]]*2; pos = l + 1; While[pos--; c5 = g[[pos]]*5; c5 > g[[l]]]; c5 = g[[pos + 1]]*5; c = Min[c2, c5]; AppendTo[g, c]]; ct = 0; i = 0; While[i++; cn = g[[i]]; cn < p, If[PrimeQ[p - cn], ct++]]; ct, {n, 1, 87}]
%t A316290 (* Second program: *)
%t A316290 Block[{nn = 450, k}, k = Sort@ Flatten@ Table[2^a * 5^b, {a, 0, Log[2, nn]}, {b, 0, Log[5, nn/(2^a)]}]; Table[Count[p - TakeWhile[k, # <= p &], _?PrimeQ], {p, Prime@ Range@ PrimePi@ nn}]] (* _Michael De Vlieger_, Jun 29 2018 *)
%t A316290 twoFiveableQ[n_] := PowerMod[10, n, n] == 0; a[n_] := Block[{p = Prime@ n}, Length@ Select[p - Select[Range@ p, twoFiveableQ], PrimeQ]]; Array[a, 105] (* _Robert G. Wilson v_, Aug 01 2018 *)
%o A316290 (PARI) a(n) = my(p=prime(n)); sum(k=1, p, isprime(p-k) && (k == 2^valuation(k,2)*5^valuation(k, 5))); \\ _Michel Marcus_, Aug 02 2018
%Y A316290 Cf. A003592, A303691.
%K A316290 nonn,easy
%O A316290 1,4
%A A316290 _Lei Zhou_, Jun 28 2018