cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A316316 Coordination sequence for tetravalent node in chamfered version of square grid.

This page as a plain text file.
%I A316316 #74 Jun 30 2021 19:52:07
%S A316316 1,4,8,8,12,20,20,20,28,32,32,36,40,44,48,48,52,60,60,60,68,72,72,76,
%T A316316 80,84,88,88,92,100,100,100,108,112,112,116,120,124,128,128,132,140,
%U A316316 140,140,148,152,152,156,160,164,168,168,172,180,180,180,188,192,192
%N A316316 Coordination sequence for tetravalent node in chamfered version of square grid.
%H A316316 Rémy Sigrist, <a href="/A316316/b316316.txt">Table of n, a(n) for n = 0..5000</a>
%H A316316 Michel Deza and Mikhail Shtogrin, <a href="https://doi.org/10.1016/S0012-365X(01)00074-7">Isometric embedding of mosaics into cubic lattices</a>, Discrete mathematics 244.1-3 (2002): 43-53. See Fig. 2.
%H A316316 Michel Deza and Mikhail Shtogrin, <a href="/A316316/a316316.png">Isometric embedding of mosaics into cubic lattices</a>, Discrete mathematics 244.1-3 (2002): 43-53. [Annotated scan of page 52 only]
%H A316316 Michel Deza and Mikhail Shtogrin, <a href="/A316316/a316316_5.png">Enlargement of figure from previous link</a>
%H A316316 Chaim Goodman-Strauss and N. J. A. Sloane, <a href="https://doi.org/10.1107/S2053273318014481">A Coloring Book Approach to Finding Coordination Sequences</a>, Acta Cryst. A75 (2019), 121-134, also <a href="http://NeilSloane.com/doc/Cairo_final.pdf">on NJAS's home page</a>. Also <a href="http://arxiv.org/abs/1803.08530">on arXiv</a>, arXiv:1803.08530 [math.CO], 2018-2019.
%H A316316 Rémy Sigrist, <a href="/A316316/a316316.gp.txt">PARI program for A316316</a>
%H A316316 Rémy Sigrist, <a href="/A316316/a316316_6.png">Illustration of first terms</a>
%H A316316 N. J. A. Sloane, <a href="/A316316/a316316_1.png">Initial terms of coordination sequence for tetravalent node</a>
%H A316316 N. J. A. Sloane, <a href="/A316316/a316316_3.png">Trunks and branches structure of tetravalent node</a> (First part of proof that a(n+12)=a(n)+40).
%H A316316 N. J. A. Sloane, <a href="/A316316/a316316_4.png">Calculation of coordination sequence</a> (Second part of proof that a(n+12)=a(n)+40).
%H A316316 N. J. A. Sloane, <a href="/A316316/a316316_7.png">"Basketweave" tiling by 3X1 rectangles which is equivalent (as far as the graph and coordination sequences are concerned) to this tiling </a>
%H A316316 N. J. A. Sloane, <a href="/A316316/a316316.pdf">An equivalent tiling seen on the sidewalk of East 70th St in New York City</a>. As far as the graph and coordination sequences are concerned, this is the same as the chamfered square grid. The trivalent vertices labeled b and c are equivalent to each other.
%H A316316 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (1,-1,2,-1,1,-1).
%F A316316 Apparently, a(n + 12) = a(n) + 40 for any n > 0. - _Rémy Sigrist_, Jun 30 2018
%F A316316 From _N. J. A. Sloane_, Jun 30 2018: This conjecture is true.
%F A316316 Theorem: a(n + 12) = a(n) + 40 for any n > 0.
%F A316316 The proof uses the Coloring Book Method described in the Goodman-Strauss - Sloane article. For details see the two links.
%F A316316 From _Colin Barker_, Dec 13 2018: (Start)
%F A316316 G.f.: (1 + 3*x + 5*x^2 + 2*x^3 + 5*x^4 + 3*x^5 + x^6) / ((1 - x)^2*(1 + x^2)*(1 + x + x^2)).
%F A316316 a(n) = a(n-1) - a(n-2) + 2*a(n-3) - a(n-4) + a(n-5) - a(n-6) for n>6.
%F A316316 (End)
%F A316316 a(n) = (2/9)*(15*n + 9*A056594(n-1) - 6*A102283(n)) for n > 0. - _Stefano Spezia_, Jun 12 2021
%t A316316 Join[{1}, LinearRecurrence[{1, -1, 2, -1, 1, -1}, {4, 8, 8, 12, 20, 20}, 100]] (* _Jean-François Alcover_, Dec 13 2018 *)
%o A316316 (PARI) See Links section.
%Y A316316 See A316317 for trivalent node.
%Y A316316 See A250120 for links to thousands of other coordination sequences.
%Y A316316 Cf. A316357 (partial sums).
%Y A316316 Cf. A056594, A102283.
%K A316316 nonn,easy
%O A316316 0,2
%A A316316 _N. J. A. Sloane_, Jun 29 2018
%E A316316 More terms from _Rémy Sigrist_, Jun 30 2018