This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A316316 #74 Jun 30 2021 19:52:07 %S A316316 1,4,8,8,12,20,20,20,28,32,32,36,40,44,48,48,52,60,60,60,68,72,72,76, %T A316316 80,84,88,88,92,100,100,100,108,112,112,116,120,124,128,128,132,140, %U A316316 140,140,148,152,152,156,160,164,168,168,172,180,180,180,188,192,192 %N A316316 Coordination sequence for tetravalent node in chamfered version of square grid. %H A316316 Rémy Sigrist, <a href="/A316316/b316316.txt">Table of n, a(n) for n = 0..5000</a> %H A316316 Michel Deza and Mikhail Shtogrin, <a href="https://doi.org/10.1016/S0012-365X(01)00074-7">Isometric embedding of mosaics into cubic lattices</a>, Discrete mathematics 244.1-3 (2002): 43-53. See Fig. 2. %H A316316 Michel Deza and Mikhail Shtogrin, <a href="/A316316/a316316.png">Isometric embedding of mosaics into cubic lattices</a>, Discrete mathematics 244.1-3 (2002): 43-53. [Annotated scan of page 52 only] %H A316316 Michel Deza and Mikhail Shtogrin, <a href="/A316316/a316316_5.png">Enlargement of figure from previous link</a> %H A316316 Chaim Goodman-Strauss and N. J. A. Sloane, <a href="https://doi.org/10.1107/S2053273318014481">A Coloring Book Approach to Finding Coordination Sequences</a>, Acta Cryst. A75 (2019), 121-134, also <a href="http://NeilSloane.com/doc/Cairo_final.pdf">on NJAS's home page</a>. Also <a href="http://arxiv.org/abs/1803.08530">on arXiv</a>, arXiv:1803.08530 [math.CO], 2018-2019. %H A316316 Rémy Sigrist, <a href="/A316316/a316316.gp.txt">PARI program for A316316</a> %H A316316 Rémy Sigrist, <a href="/A316316/a316316_6.png">Illustration of first terms</a> %H A316316 N. J. A. Sloane, <a href="/A316316/a316316_1.png">Initial terms of coordination sequence for tetravalent node</a> %H A316316 N. J. A. Sloane, <a href="/A316316/a316316_3.png">Trunks and branches structure of tetravalent node</a> (First part of proof that a(n+12)=a(n)+40). %H A316316 N. J. A. Sloane, <a href="/A316316/a316316_4.png">Calculation of coordination sequence</a> (Second part of proof that a(n+12)=a(n)+40). %H A316316 N. J. A. Sloane, <a href="/A316316/a316316_7.png">"Basketweave" tiling by 3X1 rectangles which is equivalent (as far as the graph and coordination sequences are concerned) to this tiling </a> %H A316316 N. J. A. Sloane, <a href="/A316316/a316316.pdf">An equivalent tiling seen on the sidewalk of East 70th St in New York City</a>. As far as the graph and coordination sequences are concerned, this is the same as the chamfered square grid. The trivalent vertices labeled b and c are equivalent to each other. %H A316316 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (1,-1,2,-1,1,-1). %F A316316 Apparently, a(n + 12) = a(n) + 40 for any n > 0. - _Rémy Sigrist_, Jun 30 2018 %F A316316 From _N. J. A. Sloane_, Jun 30 2018: This conjecture is true. %F A316316 Theorem: a(n + 12) = a(n) + 40 for any n > 0. %F A316316 The proof uses the Coloring Book Method described in the Goodman-Strauss - Sloane article. For details see the two links. %F A316316 From _Colin Barker_, Dec 13 2018: (Start) %F A316316 G.f.: (1 + 3*x + 5*x^2 + 2*x^3 + 5*x^4 + 3*x^5 + x^6) / ((1 - x)^2*(1 + x^2)*(1 + x + x^2)). %F A316316 a(n) = a(n-1) - a(n-2) + 2*a(n-3) - a(n-4) + a(n-5) - a(n-6) for n>6. %F A316316 (End) %F A316316 a(n) = (2/9)*(15*n + 9*A056594(n-1) - 6*A102283(n)) for n > 0. - _Stefano Spezia_, Jun 12 2021 %t A316316 Join[{1}, LinearRecurrence[{1, -1, 2, -1, 1, -1}, {4, 8, 8, 12, 20, 20}, 100]] (* _Jean-François Alcover_, Dec 13 2018 *) %o A316316 (PARI) See Links section. %Y A316316 See A316317 for trivalent node. %Y A316316 See A250120 for links to thousands of other coordination sequences. %Y A316316 Cf. A316357 (partial sums). %Y A316316 Cf. A056594, A102283. %K A316316 nonn,easy %O A316316 0,2 %A A316316 _N. J. A. Sloane_, Jun 29 2018 %E A316316 More terms from _Rémy Sigrist_, Jun 30 2018