A316320 Coordination sequence for a hexavalent node in a chamfered version of the 3^6 triangular tiling of the plane.
1, 6, 15, 27, 39, 51, 63, 75, 87, 99, 111, 123, 135, 147, 159, 171, 183, 195, 207, 219, 231, 243, 255, 267, 279, 291, 303, 315, 327, 339, 351, 363, 375, 387, 399, 411, 423, 435, 447, 459, 471, 483, 495, 507, 519, 531, 543, 555, 567, 579, 591, 603, 615, 627, 639
Offset: 0
References
- J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, 3rd. ed., 1993. See Fig. 7.2, page 199.
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Rémy Sigrist, Illustration of initial terms
- N. J. A. Sloane, The graph of the tiling. (The red dots indicate the nodes of the sublattice theta*E.)
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Crossrefs
Programs
-
PARI
Vec((1 + 3*x)*(1 + x + x^2) / (1 - x)^2 + O(x^50)) \\ Colin Barker, Mar 11 2020
Formula
a(n) = 12*n-9 = A017557(n-1) for n > 1.
From Colin Barker, Mar 11 2020: (Start)
G.f.: (1 + 3*x)*(1 + x + x^2) / (1 - x)^2.
a(n) = 2*a(n-1) - a(n-2) for n>3.
(End)
Extensions
Terms a(15) and beyond from Andrey Zabolotskiy, Sep 30 2019
Comments