cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A316344 An example of a word that is uniform morphic, but neither pure morphic, primitive morphic, nor recurrent.

Original entry on oeis.org

2, 2, 0, 2, 0, 1, 2, 1, 0, 1, 2, 0, 2, 1, 0, 2, 0, 1, 2, 0, 2, 1, 0, 1, 2, 1, 0, 2, 0, 1, 2, 1, 0, 1, 2, 0, 2, 1, 0, 1, 2, 1, 0, 2, 0, 1, 2, 0, 2, 1, 0, 2, 0, 1, 2, 1, 0, 1, 2, 0, 2, 1, 0, 2, 0, 1, 2, 0, 2, 1, 0, 1, 2, 1, 0, 2, 0, 1, 2, 0, 2, 1, 0, 2, 0, 1, 2
Offset: 0

Views

Author

N. J. A. Sloane, Jul 14 2018

Keywords

Crossrefs

Sequences mentioned in the Allouche et al. "Taxonomy" paper, listed by example number: 1: A003849, 2: A010060, 3: A010056, 4: A020985 and A020987, 5: A191818, 6: A316340 and A273129, 18: A316341, 19: A030302, 20: A063438, 21: A316342, 22: A316343, 23: A003849 minus its first term, 24: A316344, 25: A316345 and A316824, 26: A020985 and A020987, 27: A316825, 28: A159689, 29: A049320, 30: A003849, 31: A316826, 32: A316827, 33: A316828, 34: A316344, 35: A043529, 36: A316829, 37: A010060.
Cf. A036577.

Programs

  • Mathematica
    Join[{2, 2}, Differences[ThueMorse[Range[2, 100]]] + 1] (* Paolo Xausa, Jul 17 2025 *)

Formula

From Zhuorui He, Jul 11 2025: (Start)
a(n) = A010060(2*n+2) + A010060(max(2*n+1,4)).
a(n) = A036577(n+1) except a(1) = 2. (End)

Extensions

More terms from Jack W Grahl, Jul 23 2018