cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A316361 FDH numbers of strict integer partitions such that not every distinct subset has a different average.

Original entry on oeis.org

24, 56, 60, 110, 120, 135, 140, 168, 210, 216, 224, 264, 270, 273, 280, 308, 312, 315, 330, 342, 360, 378, 384, 408, 420, 440, 456, 459, 480, 504, 520, 540, 546, 550, 552, 576, 585, 594, 600, 616, 630, 660, 672, 693, 696, 702, 728, 744, 756, 759, 760, 770, 780
Offset: 1

Views

Author

Gus Wiseman, Jun 30 2018

Keywords

Comments

Let f(n) = A050376(n) be the n-th Fermi-Dirac prime. The FDH number of a strict integer partition (y_1,...,y_k) is f(y_1)*...*f(y_k).

Examples

			210 is the FDH number of (5,4,2,1), and the subsets {1,5}, and {2,4} have the same average, so 210 belongs to the data.
		

Crossrefs

Programs

  • Mathematica
    nn=1000;
    FDfactor[n_]:=If[n==1,{},Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>Power[p,Cases[Position[IntegerDigits[k,2]//Reverse,1],{m_}->2^(m-1)]]]]];
    FDprimeList=Array[FDfactor,nn,1,Union];FDrules=MapIndexed[(#1->#2[[1]])&,FDprimeList];
    Select[Range[nn],!UnsameQ@@Mean/@Union[Subsets[FDfactor[#]/.FDrules]]&]