cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A316386 Binomial transform of [0, 1, 2, -3, -4, 5, 6, -7, -8, ...].

This page as a plain text file.
%I A316386 #19 Aug 02 2018 04:18:30
%S A316386 0,1,4,6,0,-20,-48,-56,0,144,320,352,0,-832,-1792,-1920,0,4352,9216,
%T A316386 9728,0,-21504,-45056,-47104,0,102400,212992,221184,0,-475136,-983040,
%U A316386 -1015808,0,2162688,4456448,4587520,0,-9699328,-19922944,-20447232,0,42991616
%N A316386 Binomial transform of [0, 1, 2, -3, -4, 5, 6, -7, -8, ...].
%H A316386 Colin Barker, <a href="/A316386/b316386.txt">Table of n, a(n) for n = 0..1000</a>
%H A316386 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-8,8,-4).
%F A316386 a(n) = n * A009545(n).
%F A316386 a(n+1) = a(n) + A140230(n).
%F A316386 From _Colin Barker_, Jul 01 2018: (Start)
%F A316386 G.f.: x*(1 - 2*x^2) / (1 - 2*x + 2*x^2)^2.
%F A316386 a(n) = 4*a(n-1) - 8*a(n-2) + 8*a(n-3) - 4*a(n-4) for n>3.
%F A316386 a(n) = i*(((1-i)^n - (1+i)^n)*n) / 2 where i=sqrt(-1).
%F A316386 (End)
%p A316386 seq(coeff(series(x*(1-2*x^2)/(1-2*x+2*x^2)^2, x,n+1),x,n),n=0..45); # _Muniru A Asiru_, Jul 01 2018
%t A316386 CoefficientList[Series[x (1 - 2 x^2)/(1 - 2 x + 2 x^2)^2, {x, 0, 41}], x] (* _Michael De Vlieger_, Jul 01 2018 *)
%t A316386 LinearRecurrence[{4, -8, 8, -4}, {0, 1, 4, 6}, 42] (* _Robert G. Wilson v_, Jul 15 2018 *)
%o A316386 (PARI) concat(0, Vec(x*(1 - 2*x^2) / (1 - 2*x + 2*x^2)^2 + O(x^40))) \\ _Colin Barker_, Jul 01 2018
%Y A316386 Cf. A009545, A140230.
%K A316386 sign,easy
%O A316386 0,3
%A A316386 _Paul Curtz_, Jul 01 2018
%E A316386 More terms from _Colin Barker_, Jul 01 2018