This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A316408 #9 Jul 02 2018 16:31:13 %S A316408 1,3,10,33,98,291,826,2320,6297,16989,44828,117352,302429,773496, %T A316408 1954845,4905939,12195457,30123762,73825711,179891662,435427632, %U A316408 1048510795,2510267189,5981859208,14182293004,33482368279,78690956088,184229429914,429570180998 %N A316408 Number of multisets of exactly seven nonempty binary words with a total of n letters such that no word has a majority of 0's. %H A316408 Alois P. Heinz, <a href="/A316408/b316408.txt">Table of n, a(n) for n = 7..1000</a> %F A316408 a(n) = [x^n y^7] 1/Product_{j>=1} (1-y*x^j)^A027306(j). %p A316408 g:= n-> 2^(n-1)+`if`(n::odd, 0, binomial(n, n/2)/2): %p A316408 b:= proc(n, i) option remember; series(`if`(n=0 or i=1, x^n, add( %p A316408 binomial(g(i)+j-1, j)*b(n-i*j, i-1)*x^j, j=0..n/i)), x, 8) %p A316408 end: %p A316408 a:= n-> coeff(b(n$2), x, 7): %p A316408 seq(a(n), n=7..35); %Y A316408 Column k=7 of A292506. %Y A316408 Cf. A027306, A292549. %K A316408 nonn %O A316408 7,2 %A A316408 _Alois P. Heinz_, Jul 02 2018