cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A316413 Heinz numbers of integer partitions whose length divides their sum.

This page as a plain text file.
%I A316413 #20 Nov 10 2024 16:09:30
%S A316413 2,3,4,5,7,8,9,10,11,13,16,17,19,21,22,23,25,27,28,29,30,31,32,34,37,
%T A316413 39,41,43,46,47,49,53,55,57,59,61,62,64,67,68,71,73,78,79,81,82,83,84,
%U A316413 85,87,88,89,90,91,94,97,98,99,100,101,103,105,107,109,110
%N A316413 Heinz numbers of integer partitions whose length divides their sum.
%C A316413 In other words, partitions whose average is an integer.
%C A316413 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
%H A316413 Alois P. Heinz, <a href="/A316413/b316413.txt">Table of n, a(n) for n = 1..20000</a> (first 1327 terms from R. J. Mathar)
%e A316413 Sequence of partitions whose length divides their sum begins (1), (2), (11), (3), (4), (111), (22), (31), (5), (6), (1111), (7), (8), (42), (51), (9), (33), (222), (411).
%p A316413 isA326413 := proc(n)
%p A316413     psigsu := A056239(n) ;
%p A316413     psigle := numtheory[bigomega](n) ;
%p A316413     if modp(psigsu,psigle) = 0 then
%p A316413         true;
%p A316413     else
%p A316413         false;
%p A316413     end if;
%p A316413 end proc:
%p A316413 n := 1:
%p A316413 for i from 2 to 3000 do
%p A316413     if isA326413(i) then
%p A316413         printf("%d %d\n",n,i);
%p A316413         n := n+1 ;
%p A316413     end if;
%p A316413 end do: # _R. J. Mathar_, Aug 09 2019
%p A316413 # second Maple program:
%p A316413 q:= n-> (l-> nops(l)>0 and irem(add(i, i=l), nops(l))=0)(map
%p A316413         (i-> numtheory[pi](i[1])$i[2], ifactors(n)[2])):
%p A316413 select(q, [$1..110])[];  # _Alois P. Heinz_, Nov 19 2021
%t A316413 Select[Range[2,100],Divisible[Total[Cases[FactorInteger[#],{p_,k_}:>k*PrimePi[p]]],PrimeOmega[#]]&]
%Y A316413 Cf. A056239, A067538, A074761, A143773, A237984, A289508, A289509, A290103, A296150, A298423, A316428, A316431.
%K A316413 nonn
%O A316413 1,1
%A A316413 _Gus Wiseman_, Jul 02 2018