cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A316429 Heinz numbers of integer partitions whose length is equal to their LCM.

This page as a plain text file.
%I A316429 #17 Jul 05 2018 14:21:56
%S A316429 2,6,9,20,50,56,84,125,126,176,189,196,240,294,360,416,441,540,600,
%T A316429 624,686,810,900,936,968,1029,1040,1088,1215,1350,1404,1500,1560,2025,
%U A316429 2106,2250,2340,2401,2432,2600,2704,3159,3375,3510,3648,3750,3900,4056,5265
%N A316429 Heinz numbers of integer partitions whose length is equal to their LCM.
%C A316429 A110295 is a subsequence.
%H A316429 David A. Corneth, <a href="/A316429/b316429.txt">Table of n, a(n) for n = 1..10822</a> (Terms <= 5 * 10^11)
%e A316429 3750 is the Heinz number of (3,3,3,3,2,1), whose length and lcm are both 6.
%t A316429 Select[Range[2,200],PrimeOmega[#]==LCM@@Cases[FactorInteger[#],{p_,k_}:>PrimePi[p]]&]
%o A316429 (PARI) heinz(n) = my(f=factor(n), pr=f[,1]~,exps=f[,2], res=vector(vecsum(exps)), t=0); for(i = 1, #pr, pr[i] = primepi(pr[i]); for(j=1, exps[i],t++; res[t] = pr[i])); res
%o A316429 is(n) = my(h = heinz(n)); lcm(h)==#h \\ _David A. Corneth_, Jul 05 2018
%Y A316429 Cf. A056239, A074761, A110295, A143773, A237984, A289508, A289509, A290103, A296150, A316413, A316428, A316430, A316431.
%K A316429 nonn,easy
%O A316429 1,1
%A A316429 _Gus Wiseman_, Jul 02 2018