cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A316430 Heinz numbers of integer partitions whose length is equal to the GCD of all the parts.

Original entry on oeis.org

1, 2, 9, 21, 39, 57, 87, 91, 111, 125, 129, 159, 183, 203, 213, 237, 247, 267, 301, 303, 321, 325, 339, 377, 393, 417, 427, 453, 489, 519, 543, 551, 553, 559, 575, 579, 597, 669, 687, 689, 707, 717, 753, 789, 791, 813, 817, 843, 845, 879, 923, 925, 933, 951, 973
Offset: 1

Views

Author

Gus Wiseman, Jul 02 2018

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
2 is the only even term in the sequence. 3k is in the sequence if and only if k is in A031215. 5k is in the sequence if and only if k = pq with p and q in A031336.

Examples

			Sequence of integer partitions whose length is equal to their GCD begins: (), (1), (2,2), (4,2), (6,2), (8,2), (10,2), (6,4), (12,2), (3,3,3), (14,2), (16,2), (18,2), (10,4), (20,2), (22,2), (8,6), (24,2), (14,4), (26,2), (28,2), (6,3,3).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[200],PrimeOmega[#]==GCD@@Cases[FactorInteger[#],{p_,k_}:>PrimePi[p]]&]
  • PARI
    is(n,f=factor(n))=gcd(apply(primepi,f[,1]))==vecsum(f[,2]) \\ Charles R Greathouse IV, Jul 25 2024

Formula

a(n) << n log^2 n, can this be improved? - Charles R Greathouse IV, Jul 25 2024