A316430 Heinz numbers of integer partitions whose length is equal to the GCD of all the parts.
1, 2, 9, 21, 39, 57, 87, 91, 111, 125, 129, 159, 183, 203, 213, 237, 247, 267, 301, 303, 321, 325, 339, 377, 393, 417, 427, 453, 489, 519, 543, 551, 553, 559, 575, 579, 597, 669, 687, 689, 707, 717, 753, 789, 791, 813, 817, 843, 845, 879, 923, 925, 933, 951, 973
Offset: 1
Keywords
Examples
Sequence of integer partitions whose length is equal to their GCD begins: (), (1), (2,2), (4,2), (6,2), (8,2), (10,2), (6,4), (12,2), (3,3,3), (14,2), (16,2), (18,2), (10,4), (20,2), (22,2), (8,6), (24,2), (14,4), (26,2), (28,2), (6,3,3).
Crossrefs
Programs
-
Mathematica
Select[Range[200],PrimeOmega[#]==GCD@@Cases[FactorInteger[#],{p_,k_}:>PrimePi[p]]&]
-
PARI
is(n,f=factor(n))=gcd(apply(primepi,f[,1]))==vecsum(f[,2]) \\ Charles R Greathouse IV, Jul 25 2024
Formula
a(n) << n log^2 n, can this be improved? - Charles R Greathouse IV, Jul 25 2024
Comments