This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A316431 #24 Sep 23 2018 21:27:09 %S A316431 1,1,1,1,2,1,1,1,3,1,2,1,4,6,1,1,2,1,3,2,5,1,2,1,6,1,4,1,6,1,1,10,7, %T A316431 12,2,1,8,3,3,1,4,1,5,6,9,1,2,1,3,14,6,1,2,15,4,4,10,1,6,1,11,2,1,2, %U A316431 10,1,7,18,12,1,2,1,12,6,8,20,6,1,3,1,13,1,4,21,14,5,5,1,6,6,9,22,15,24,2,1,4,10,3,1,14,1,6,12 %N A316431 Least common multiple divided by greatest common divisor of the integer partition with Heinz number n > 1. %C A316431 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %H A316431 Antti Karttunen, <a href="/A316431/b316431.txt">Table of n, a(n) for n = 2..65537</a> %H A316431 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a> %H A316431 <a href="/index/He#Heinz">Index entries for sequences related to Heinz numbers</a> %F A316431 a(n) = A290103(n)/A289508(n). %F A316431 a(n) = a(A005117(n)). - _David A. Corneth_, Sep 06 2018 %e A316431 63 is the Heinz number of (4,2,2), which has LCM 4 and GCD 2, so a(63) = 4/2 = 2. %e A316431 91 is the Heinz number of (6,4), which has LCM 12 and GCD 2, so a(91) = 12/2 = 6. %t A316431 Table[With[{pms=Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]]},LCM@@pms/GCD@@pms],{n,2,100}] %o A316431 (PARI) A316431(n) = if(1==n,1,my(pis = apply(p -> primepi(p), factor(n)[, 1]~)); lcm(pis)/gcd(pis)); \\ _Antti Karttunen_, Sep 06 2018 %Y A316431 Cf. A005117, A056239, A074761, A289508, A289509, A290103, A296150, A316429, A316430, A316437. %K A316431 nonn,look %O A316431 2,5 %A A316431 _Gus Wiseman_, Jul 02 2018 %E A316431 More terms from _Antti Karttunen_, Sep 06 2018