cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A316437 Take the integer partition with Heinz number n, divide all parts by the GCD of the parts, then take the Heinz number of the resulting partition.

This page as a plain text file.
%I A316437 #10 Aug 26 2018 12:24:17
%S A316437 1,2,2,4,2,6,2,8,4,10,2,12,2,14,15,16,2,18,2,20,6,22,2,24,4,26,8,28,2,
%T A316437 30,2,32,33,34,35,36,2,38,10,40,2,42,2,44,45,46,2,48,4,50,51,52,2,54,
%U A316437 55,56,14,58,2,60,2,62,12,64,6,66,2,68,69,70,2,72,2,74,75,76,77,78,2,80,16,82,2,84,85,86,22,88,2,90,15
%N A316437 Take the integer partition with Heinz number n, divide all parts by the GCD of the parts, then take the Heinz number of the resulting partition.
%C A316437 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
%C A316437 This sequence is idempotent, meaning a(a(n)) = a(n) for all n.
%C A316437 All terms belong to A289509.
%H A316437 Antti Karttunen, <a href="/A316437/b316437.txt">Table of n, a(n) for n = 1..65537</a>
%H A316437 Wikipedia, <a href="https://en.wikipedia.org/wiki/Idempotence">Idempotence</a>
%H A316437 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%t A316437 f[n_]:=If[n==1,1,With[{pms=Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]},Times@@Prime/@(pms/GCD@@pms)]];
%t A316437 Table[f[n],{n,100}]
%o A316437 (PARI) A316437(n) = if(1==n,1,my(f = factor(n), pis = apply(p -> primepi(p), f[, 1]~), es = f[, 2]~, g = gcd(pis)); factorback(vector(#f~, k, prime(pis[k]/g)^es[k]))); \\ _Antti Karttunen_, Aug 06 2018
%Y A316437 Cf. A000720, A056239, A289508, A289509, A290103, A296150, A316430, A316431, A316432, A316438.
%K A316437 nonn
%O A316437 1,2
%A A316437 _Gus Wiseman_, Jul 03 2018
%E A316437 More terms from _Antti Karttunen_, Aug 06 2018