This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A316457 #10 Aug 18 2018 11:23:32 %S A316457 31,512,2943,10624,29375,68256,140287,263168,459999,760000,1199231, %T A316457 1821312,2678143,3830624,5349375,7315456,9821087,12970368,16879999, %U A316457 21680000,27514431,34542112,42937343,52890624,64609375,78318656,94261887,112701568,133919999 %N A316457 Expansion of x*(31 + 326*x + 336*x^2 + 26*x^3 + x^4) / (1 - x)^6. %C A316457 Seems to be the first column of A316349. %H A316457 Colin Barker, <a href="/A316457/b316457.txt">Table of n, a(n) for n = 1..1000</a> %H A316457 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (6,-15,20,-15,6,-1). %F A316457 G.f.: x*(31 + 326*x + 336*x^2 + 26*x^3 + x^4) / (1 - x)^6. %F A316457 a(n) = 6*n^5 + 15*n^4 + 10*n^3. %F A316457 a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>6. %o A316457 (PARI) Vec(x*(31 + 326*x + 336*x^2 + 26*x^3 + x^4) / (1 - x)^6 + O(x^40)) %o A316457 (PARI) a(n) = 6*n^5 + 15*n^4 + 10*n^3 %Y A316457 Cf. A316349, A316458, A316459. %K A316457 nonn,easy %O A316457 1,1 %A A316457 _Colin Barker_, Aug 12 2018