This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A316458 #9 Aug 18 2018 11:23:58 %S A316458 60,540,2160,6000,13500,26460,47040,77760,121500,181500,261360,365040, %T A316458 496860,661500,864000,1109760,1404540,1754460,2166000,2646000,3201660, %U A316458 3840540,4570560,5400000,6337500,7392060,8573040,9890160,11353500,12973500,14760960 %N A316458 Expansion of 60*x*(1 + 4*x + x^2) / (1 - x)^5. %C A316458 Seems to be the negative of the second column of A316349. %H A316458 Colin Barker, <a href="/A316458/b316458.txt">Table of n, a(n) for n = 1..1000</a> %H A316458 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1). %F A316458 G.f.: 60*x*(1 + 4*x + x^2) / (1 - x)^5. %F A316458 a(n) = 60 * A000537(n). %F A316458 a(n) = 15*n^4 + 30*n^3 + 15*n^2. %F A316458 a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5. %o A316458 (PARI) Vec(60*x*(1 + 4*x + x^2) / (1 - x)^5 + O(x^40)) %o A316458 (PARI) a(n) = 15*n^4 + 30*n^3 + 15*n^2 %Y A316458 Cf. A000537, A316349, A316457, A316459. %K A316458 nonn,easy %O A316458 1,1 %A A316458 _Colin Barker_, Aug 12 2018