cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A316459 Expansion of 30*x*(1 + x) / (1 - x)^4.

This page as a plain text file.
%I A316459 #8 Aug 18 2018 11:24:05
%S A316459 30,150,420,900,1650,2730,4200,6120,8550,11550,15180,19500,24570,
%T A316459 30450,37200,44880,53550,63270,74100,86100,99330,113850,129720,147000,
%U A316459 165750,186030,207900,231420,256650,283650,312480,343200,375870,410550,447300,486180
%N A316459 Expansion of 30*x*(1 + x) / (1 - x)^4.
%C A316459 Seems to be the third column of A316349.
%H A316459 Colin Barker, <a href="/A316459/b316459.txt">Table of n, a(n) for n = 1..1000</a>
%H A316459 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).
%F A316459 G.f.: 30*x*(1 + x) / (1 - x)^4.
%F A316459 a(n) = 30 * A000330(n).
%F A316459 a(n) = 10*n^3 + 15*n^2 + 5*n.
%F A316459 a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>4.
%o A316459 (PARI) Vec(30*x*(1 + x) / (1 - x)^4 + O(x^40))
%o A316459 (PARI) a(n) = 10*n^3 + 15*n^2 + 5*n
%Y A316459 Cf. A000330, A316349, A316457, A316458.
%K A316459 nonn,easy
%O A316459 1,1
%A A316459 _Colin Barker_, Aug 12 2018