This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A316465 #16 Jul 06 2018 17:05:11 %S A316465 1,2,3,4,5,7,8,9,10,11,13,16,17,19,21,22,23,25,27,29,31,32,34,37,39, %T A316465 41,43,46,47,49,53,55,57,59,61,62,64,67,68,71,73,79,81,82,83,85,87,89, %U A316465 91,94,97,101,103,107,109,110,111,113,115,118,121,125,127,128 %N A316465 Heinz numbers of integer partitions such that every nonempty submultiset has an integer average. %C A316465 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %C A316465 Supersequence of A000961. - _David A. Corneth_, Jul 06 2018 %e A316465 Sequence of partitions begins (), (1), (2), (1,1), (3), (4), (1,1,1), (2,2), (3,1), (5), (6), (1,1,1,1), (7), (8), (4,2), (5,1), (9), (3,3), (2,2,2). %t A316465 Select[Range[100],And@@IntegerQ/@Mean/@Union[Rest[Subsets[If[#==1,{},Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]]]]]&] %Y A316465 Cf. A056239, A067538, A122768, A237984, A296150, A316313, A316314, A316440, A316557. %K A316465 nonn %O A316465 1,2 %A A316465 _Gus Wiseman_, Jul 06 2018