A316467 Matula-Goebel numbers of locally stable rooted identity trees, meaning no branch is a subset of any other branch of the same root.
1, 2, 3, 5, 11, 15, 31, 33, 47, 55, 93, 127, 137, 141, 155, 165, 211, 257, 341, 381, 411, 465, 487, 633, 635, 709, 771, 773, 811, 907, 977, 1023, 1055, 1285, 1297, 1397, 1457, 1461, 1507, 1621, 1705, 1905, 2127, 2293, 2319, 2321, 2433, 2621, 2721, 2833, 2931
Offset: 1
Keywords
Examples
165 = prime(2)*prime(3)*prime(5) belongs to the sequence because it is squarefree, the indices {2,3,5} are pairwise indivisible, and each of them already belongs to the sequence. Sequence of locally stable rooted identity trees preceded by their Matula-Goebel numbers begins: 1: o 2: (o) 3: ((o)) 5: (((o))) 11: ((((o)))) 15: ((o)((o))) 31: (((((o))))) 33: ((o)(((o)))) 47: (((o)((o)))) 55: (((o))(((o)))) 93: ((o)((((o))))) 127: ((((((o)))))) 137: (((o)(((o))))) 141: ((o)((o)((o)))) 155: (((o))((((o))))) 165: ((o)((o))(((o))))
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; ain[n_]:=And[Select[Tuples[primeMS[n],2],UnsameQ@@#&&Divisible@@#&]=={},SquareFreeQ[n],And@@ain/@primeMS[n]]; Select[Range[100],ain]
Comments