This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A316468 #6 Jul 05 2018 02:30:12 %S A316468 1,2,3,4,5,7,8,9,11,15,16,17,19,23,25,27,31,32,33,35,45,47,49,51,53, %T A316468 55,59,64,67,69,75,77,81,83,85,93,95,97,99,103,119,121,125,127,128, %U A316468 131,135,137,141,149,153,155,161,165,175,177,187,197,201,207,209 %N A316468 Matula-Goebel numbers of locally stable rooted trees, meaning no branch is a submultiset of any other branch of the same root. %C A316468 A prime index of n is a number m such that prime(m) divides n. A number is in the sequence iff its distinct prime indices are pairwise indivisible and already belong to the sequence. %e A316468 Sequence of locally stable rooted trees preceded by their Matula-Goebel numbers begins: %e A316468 1: o %e A316468 2: (o) %e A316468 3: ((o)) %e A316468 4: (oo) %e A316468 5: (((o))) %e A316468 7: ((oo)) %e A316468 8: (ooo) %e A316468 9: ((o)(o)) %e A316468 11: ((((o)))) %e A316468 15: ((o)((o))) %e A316468 16: (oooo) %e A316468 17: (((oo))) %e A316468 19: ((ooo)) %e A316468 23: (((o)(o))) %e A316468 25: (((o))((o))) %e A316468 27: ((o)(o)(o)) %e A316468 31: (((((o))))) %t A316468 primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A316468 Select[Range[100],Or[#==1,And[Select[Tuples[primeMS[#],2],UnsameQ@@#&&Divisible@@#&]=={},And@@#0/@primeMS[#]]]&] %Y A316468 Cf. A000081, A004111, A007097, A112798, A277098, A285572, A285573, A303362, A304713, A316467, A316470, A316473, A316475, A316476, A316495. %K A316468 nonn %O A316468 1,2 %A A316468 _Gus Wiseman_, Jul 04 2018