This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A316469 #5 Jul 05 2018 07:21:05 %S A316469 1,2,6,26,78,202,606,794,2382,2462,2626,7386,7878,8914,10322,12178, %T A316469 26742,30966,32006,36534,42374,43954,47206,80194,96018,115882,127122, %U A316469 131862,141618,149782,158314,160978,184622,217058,240582,248662,260422,347646,449346 %N A316469 Matula-Goebel numbers of unlabeled rooted identity RPMG-trees, meaning the Matula-Goebel numbers of the branches of any non-leaf node are relatively prime. %C A316469 A prime index of n is a number m such that prime(m) divides n. A number is in the sequence iff it is 1 or its prime indices are distinct, relatively prime, and already belong to the sequence. %e A316469 78 = prime(1)*prime(2)*prime(6) belongs to the sequence because the indices {1,2,6} are relatively prime, distinct, and already belong to the sequence. %e A316469 The sequence of all identity RPMG-trees preceded by their Matula-Goebel numbers begins: %e A316469 1: o %e A316469 2: (o) %e A316469 6: (o(o)) %e A316469 26: (o(o(o))) %e A316469 78: (o(o)(o(o))) %e A316469 202: (o(o(o(o)))) %e A316469 606: (o(o)(o(o(o)))) %e A316469 794: (o(o(o)(o(o)))) %e A316469 2382: (o(o)(o(o)(o(o)))) %e A316469 2462: (o(o(o(o(o))))) %e A316469 2626: (o(o(o))(o(o(o)))) %e A316469 7386: (o(o)(o(o(o(o))))) %e A316469 7878: (o(o)(o(o))(o(o(o)))) %t A316469 primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A316469 Select[Range[1000],Or[#==1,And[SquareFreeQ[#],GCD@@primeMS[#]==1,And@@#0/@primeMS[#]]]&] %Y A316469 Cf. A000081, A000837, A004111, A007097, A078374, A276625, A289509, A302696, A302796, A316467, A316470, A316471, A316474, A316494. %K A316469 nonn %O A316469 1,2 %A A316469 _Gus Wiseman_, Jul 04 2018