This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A316470 #5 Jul 05 2018 07:21:12 %S A316470 1,2,4,6,8,12,14,16,18,24,26,28,32,36,38,42,48,52,54,56,64,72,74,76, %T A316470 78,84,86,96,98,104,106,108,112,114,122,126,128,144,148,152,156,162, %U A316470 168,172,178,182,192,196,202,208,212,214,216,222,224,228,234,244,252 %N A316470 Matula-Goebel numbers of unlabeled rooted RPMG-trees, meaning the Matula-Goebel numbers of the branches of any non-leaf node are relatively prime. %C A316470 A prime index of n is a number m such that prime(m) divides n. A number is in the sequence iff it is 1 or its prime indices are relatively prime and already belong to the sequence. %e A316470 The sequence of all RPMG-trees preceded by their Matula-Goebel numbers begins: %e A316470 1: o %e A316470 2: (o) %e A316470 4: (oo) %e A316470 6: (o(o)) %e A316470 8: (ooo) %e A316470 12: (oo(o)) %e A316470 14: (o(oo)) %e A316470 16: (oooo) %e A316470 18: (o(o)(o)) %e A316470 24: (ooo(o)) %e A316470 26: (o(o(o))) %e A316470 28: (oo(oo)) %e A316470 32: (ooooo) %e A316470 36: (oo(o)(o)) %e A316470 38: (o(ooo)) %e A316470 42: (o(o)(oo)) %t A316470 primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A316470 Select[Range[1000],Or[#==1,And[GCD@@primeMS[#]==1,And@@#0/@primeMS[#]]]&] %Y A316470 Cf. A000081, A000837, A007097, A289509, A302796, A316468, A316469, A316473, A316475, A316495. %K A316470 nonn %O A316470 1,2 %A A316470 _Gus Wiseman_, Jul 04 2018