A316475 Number of locally stable rooted trees with n nodes, meaning no branch is a submultiset of any other (unequal) branch of the same root.
1, 1, 2, 3, 5, 7, 14, 25, 50, 101, 207, 426, 902, 1917, 4108, 8887, 19335, 42330, 93130, 205894, 456960, 1018098, 2275613, 5102248, 11471107, 25856413
Offset: 1
Examples
The a(6) = 7 locally stable rooted trees: (((((o))))) ((((oo)))) (((ooo))) (((o)(o))) ((oooo)) ((o)((o))) (ooooo)
Links
Programs
-
Mathematica
submultisetQ[M_,N_]:=Or[Length[M]==0,MatchQ[{Sort[List@@M],Sort[List@@N]},{{x_,Z___},{_,x_,W___}}/;submultisetQ[{Z},{W}]]] strut[n_]:=strut[n]=If[n===1,{{}},Select[Join@@Function[c,Union[Sort/@Tuples[strut/@c]]]/@IntegerPartitions[n-1],Select[Tuples[#,2],UnsameQ@@#&&submultisetQ@@#&]=={}&]]; Table[Length[strut[n]],{n,15}]
Extensions
a(21)-a(26) from Robert Price, Sep 13 2018