This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A316480 #18 Jul 15 2018 12:34:12 %S A316480 1,1,0,0,1,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,5,0,0,2,0,0,0,0,0,0,0, %T A316480 6,0,0,0,0,0,0,0,5,0,0,21,0,0,1,0,0,0,0,57,0,0,42,0,0,0,0,2,0,0,192,0, %U A316480 0,14,0,0,0,0,52,0,0,499,0,0,0,0,0,25,191,1281,2658,2282,705,65,0,0 %N A316480 Table read by rows: T(n,k), 0 <= k <= 9, is the number of n-digit squares whose average digit is exactly k. %C A316480 The only square whose average digit is 0 is the 1-digit number 0^2 = 0. %C A316480 The only square whose average digit is 9 is the 1-digit number 3^2 = 9. %C A316480 Suppose m^2 is an n-digit number whose average digit is an integer k, i.e., digitsum(m^2) = n*k. Since digitsum(m^2) mod 9 = 0, 1, 4, or 7 (cf. A004159), it follows that %C A316480 - if k = 1, 4, or 7, then n mod 9 = 0, 1, 4, or 7; %C A316480 - if k = 2, 5, or 8, then n mod 9 = 0, 2, 5, or 8; %C A316480 - if k = 3 or 6, then n mod 9 = 0, 3, or 6. %C A316480 In this table, each possible combination of a value of k and a value of n mod 9 is identified with an asterisk (*): %C A316480 . %C A316480 n mod 9 %C A316480 . %C A316480 0 1 2 3 4 5 6 7 8 %C A316480 +---------------------------------- %C A316480 1 | * * * * %C A316480 | %C A316480 2 | * * * * %C A316480 | %C A316480 3 | * * * %C A316480 | %C A316480 4 | * * * * %C A316480 k | %C A316480 5 | * * * * %C A316480 | %C A316480 6 | * * * %C A316480 | %C A316480 7 | * * * * %C A316480 | %C A316480 8 | * * * * %C A316480 . %C A316480 Not surprisingly, among the values k=1..8, the value of k that occurs least frequently as the average digit of a square is 8. %H A316480 Jon E. Schoenfield, <a href="/A316480/b316480.txt">Table of n, a(n) for n = 1..190</a> %e A316480 Table begins %e A316480 n\k| 0 1 2 3 4 5 6 7 8 9 %e A316480 ---+--------------------------------------------------------- %e A316480 1 | 1 1 0 0 1 0 0 0 0 1 %e A316480 2 | 0 0 0 0 0 1 0 0 0 0 %e A316480 3 | 0 0 0 5 0 0 2 0 0 0 %e A316480 4 | 0 0 0 0 6 0 0 0 0 0 %e A316480 5 | 0 0 5 0 0 21 0 0 1 0 %e A316480 6 | 0 0 0 57 0 0 42 0 0 0 %e A316480 7 | 0 2 0 0 192 0 0 14 0 0 %e A316480 8 | 0 0 52 0 0 499 0 0 0 0 %e A316480 9 | 0 25 191 1281 2658 2282 705 65 0 0 %e A316480 10 | 0 12 0 0 5308 0 0 93 0 0 %e A316480 11 | 0 0 548 0 0 13597 0 0 1 0 %e A316480 12 | 0 0 0 23310 0 0 12871 0 0 0 %e A316480 13 | 0 77 0 0 143724 0 0 753 0 0 %e A316480 14 | 0 0 5572 0 0 360720 0 0 1 0 %e A316480 15 | 0 0 0 449170 0 0 239403 0 0 0 %e A316480 16 | 0 102 0 0 3990950 0 0 6029 0 0 %e A316480 17 | 0 0 51977 0 0 9994767 0 0 4 0 %e A316480 18 | 0 417 157382 8665925 55115308 45351595 4568205 36552 8 0 %t A316480 Block[{nn = 9, s}, s = MapAt[Prepend[#, 0] &, Map[Mean@ IntegerDigits[#] &, SplitBy[Range[10^(nn/2)]^2, IntegerLength], {2}], 1]; Table[Count[s[[n]], k], {n, nn}, {k, 0, 9}]] // Flatten (* _Michael De Vlieger_, Jul 06 2018 *) %Y A316480 Cf. A004159, A069711. %Y A316480 Cf. A316481-A316488 (Squares whose arithmetic mean of digits is k, for k=1..8). %K A316480 nonn,tabf,base %O A316480 1,24 %A A316480 _Jon E. Schoenfield_, Jul 04 2018