A316494 Matula-Goebel numbers of locally disjoint rooted identity trees, meaning no branch overlaps any other branch of the same root.
1, 2, 3, 5, 6, 10, 11, 13, 15, 22, 26, 29, 30, 31, 33, 41, 47, 55, 58, 62, 66, 79, 82, 93, 94, 101, 109, 110, 113, 123, 127, 137, 141, 143, 145, 155, 158, 165, 179, 186, 202, 205, 211, 218, 226, 246, 254, 257, 271, 274, 282, 286, 290, 293, 310, 317, 327, 330
Offset: 1
Keywords
Examples
The sequence of all locally disjoint rooted identity trees preceded by their Matula-Goebel numbers begins: 1: o 2: (o) 3: ((o)) 5: (((o))) 6: (o(o)) 10: (o((o))) 11: ((((o)))) 13: ((o(o))) 15: ((o)((o))) 22: (o(((o)))) 26: (o(o(o))) 29: ((o((o)))) 30: (o(o)((o))) 31: (((((o)))))
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Select[Range[1000],Or[#==1,And[SquareFreeQ[#],Or[PrimeQ[#],CoprimeQ@@primeMS[#]],And@@#0/@primeMS[#]]]&]
Comments