This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A316495 #6 Jul 05 2018 02:30:59 %S A316495 1,2,3,4,5,6,7,8,10,11,12,13,14,15,16,17,18,19,20,22,24,26,28,29,30, %T A316495 31,32,33,34,35,36,37,38,40,41,43,44,45,47,48,50,51,52,53,54,55,56,58, %U A316495 59,60,61,62,64,66,67,68,70,71,72,74,75,76,77,79,80,82,85 %N A316495 Matula-Goebel numbers of locally disjoint unlabeled rooted trees, meaning no branch overlaps any other (unequal) branch of the same root. %C A316495 A prime index of n is a number m such that prime(m) divides n. A number is in the sequence iff either it is equal to 1, it is a prime number whose prime index already belongs to the sequence, or its distinct prime indices are pairwise coprime and already belong to the sequence. %e A316495 The sequence of all locally disjoint rooted trees preceded by their Matula-Goebel numbers begins: %e A316495 1: o %e A316495 2: (o) %e A316495 3: ((o)) %e A316495 4: (oo) %e A316495 5: (((o))) %e A316495 6: (o(o)) %e A316495 7: ((oo)) %e A316495 8: (ooo) %e A316495 10: (o((o))) %e A316495 11: ((((o)))) %e A316495 12: (oo(o)) %e A316495 13: ((o(o))) %e A316495 14: (o(oo)) %e A316495 15: ((o)((o))) %e A316495 16: (oooo) %e A316495 17: (((oo))) %e A316495 18: (o(o)(o)) %e A316495 19: ((ooo)) %e A316495 20: (oo((o))) %t A316495 primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A316495 go[n_]:=Or[n==1,And[Or[PrimeQ[n],CoprimeQ@@Union[primeMS[n]]],And@@go/@primeMS[n]]]; %t A316495 Select[Range[100],go] %Y A316495 Cf. A000081, A007097, A302696, A303362, A304713, A316468, A316470, A316473, A316475, A316494. %K A316495 nonn %O A316495 1,2 %A A316495 _Gus Wiseman_, Jul 04 2018