This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A316503 #5 Jul 05 2018 07:21:44 %S A316503 1,2,3,5,6,10,11,13,15,22,26,29,30,31,33,41,47,55,58,62,66,78,79,82, %T A316503 93,94,101,109,110,113,123,127,130,137,141,143,145,155,158,165,174, %U A316503 179,186,195,202,205,211,218,226,246,254,257,271,274,282,286,290,293 %N A316503 Matula-Goebel numbers of unlabeled rooted identity trees with n nodes in which the branches of any node with more than one branch have empty intersection. %e A316503 Sequence of rooted identity trees preceded by their Matula-Goebel numbers begins: %e A316503 1: o %e A316503 2: (o) %e A316503 3: ((o)) %e A316503 5: (((o))) %e A316503 6: (o(o)) %e A316503 10: (o((o))) %e A316503 11: ((((o)))) %e A316503 13: ((o(o))) %e A316503 15: ((o)((o))) %e A316503 22: (o(((o)))) %e A316503 26: (o(o(o))) %e A316503 29: ((o((o)))) %e A316503 30: (o(o)((o))) %e A316503 31: (((((o))))) %t A316503 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A316503 Select[Range[100],Or[#==1,And[SquareFreeQ[#],Or[PrimeQ[#],GCD@@primeMS[#]==1],And@@#0/@primeMS[#]]]&] %Y A316503 Cf. A000081, A000837, A004111, A007097, A078374, A276625, A289509, A302796, A316467, A316470, A316494, A316502. %K A316503 nonn %O A316503 1,2 %A A316503 _Gus Wiseman_, Jul 05 2018