cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A323019 a(n) is the smallest k such that A316506(k) = n.

Original entry on oeis.org

1, 2, 4, 8, 20, 40, 120, 520, 1560, 8840, 26520, 185640, 769080, 5383560, 28455960, 199191720, 1166694360, 8166860520, 61834801080, 432843607560, 3771922865880, 26403460061160, 275350369209240, 1927452584464680, 21201978429111480, 171543280017356520
Offset: 0

Views

Author

Jianing Song, Jan 10 2019

Keywords

Comments

a(n) is the smallest k such that the rank of the multiplicative group of Gaussian integers modulo k is n.

Examples

			a(2) = 4, i(2) = 0, j(2) = 0;
a(3) = 8, i(3) = 0, j(3) = 0;
For n = 4, a(n-2)*p(i(n-2)+1) = a(2)*p(1) = 4*5 = 20, a(n-1)*q(j(n-1)+1) = a(3)*q(1) = 8*3 = 24. So a(4) = 20, i(4) = i(2) + 1 = 1, j(4) = j(2) = 0.
For n = 5, a(n-2)*p(i(n-2)+1) = a(3)*p(1) = 8*5 = 40, a(n-1)*q(j(n-1)+1) = a(4)*q(1) = 20*3 = 60. So a(5) = 40, i(5) = i(3) + 1 = 1, j(5) = j(3) = 0.
For n = 6, a(n-2)*p(i(n-2)+1) = a(4)*p(2) = 20*13 = 260, a(n-1)*q(j(n-1)+1) = a(5)*q(1) = 40*3 = 120. So a(6) = 120, i(6) = i(5) = 1, j(6) = j(5) + 1 = 1.
...
List of the multiplicative groups of Gaussian integers modulo members of this sequence:
a(0) = 1: the trivial group;
a(1) = 2: C_2;
a(2) = 4: C_2 X C_4;
a(3) = 8: C_2 X C_4 X C_4;
a(4) = 20: C_2 X C_4 X C_4 X C_4;
a(5) = 40: C_2 X C_4 X C_4 X C_4 X C_4;
a(6) = 120: C_2 X C_4 X C_4 X C_4 X C_4 X C_8;
a(7) = 520: C_2 X C_4 X C_4 X C_4 X C_4 X C_12 X C_12;
a(8) = 1560: C_2 X C_4 X C_4 X C_4 X C_4 X C_4 X C_12 X C_24;
a(9) = 8840: C_2 X C_4 X C_4 X C_4 X C_4 X C_4 X C_4 X C_48 X C_48;
a(10) = 26520: C_2 X C_4 X C_4 X C_4 X C_4 X C_4 X C_4 X C_8 X C_48 X C_48;
...
		

Crossrefs

Cf. A316506.

Programs

  • PARI
    p(n) = my(i=0, k=0); while(i
    				

Formula

a(0) = 1, a(1) = 2, a(2) = 4, a(3) = 8. Let p(n) be the n-th prime congruent to 1 modulo 4, q(n) be the n-th prime congruent to 3 modulo 4. Then there exists {i(n)} and {j(n)} such that i(2) = j(2) = i(3) = j(3) = 0; for n >= 4, if a(n-2)*p(i(n-2)+1) < a(n-1)*q(j(n-1)+1), then a(n) = a(n-2)*p(i(n-2)+1), i(n) = i(n-2) + 1, j(n) = j(n-2), or a(n) = a(n-1)*q(j(n-1)+1), i(n) = i(n-1), j(n) = j(n-1) + 1.

A227334 Exponent of the group of the Gaussian integers in a reduced system modulo n.

Original entry on oeis.org

1, 2, 8, 4, 4, 8, 48, 4, 24, 4, 120, 8, 12, 48, 8, 8, 16, 24, 360, 4, 48, 120, 528, 8, 20, 12, 72, 48, 28, 8, 960, 16, 120, 16, 48, 24, 36, 360, 24, 4, 40, 48, 1848, 120, 24, 528, 2208, 8, 336, 20, 16, 12, 52, 72, 120, 48, 360, 28, 3480, 8, 60, 960, 48, 32
Offset: 1

Views

Author

Keywords

Comments

a(n) is the exponent of the multiplicative group of Gaussian integers modulo n, i.e., (Z[i]/nZ[i])* = {a + b*i: a, b in Z/nZ and gcd(a^2 + b^2, n) = 1}. The number of elements in (Z[i]/nZ[i])* is A079458(n).
For n > 2, a(n) is divisible by 4. - Jianing Song, Aug 29 2018
From Jianing Song, Sep 23 2018: (Start)
Equivalent of psi (A002322) in the ring of Gaussian integers.
a(n) is the smallest positive e such that for any Gaussian integer z coprime to n we have z^e == 1 (mod n).
By definition, A079458(n)/a(n) is always an integer, and is 1 iff (Z[i]/nZ[i])* is cyclic, that is, rank((Z[i]/nZ[i])*) = A316506(n) = 0 or 1, and n has a primitive root in (Z[i]/nZ[i])*. A079458(n)/a(n) = 1 iff n = 1, 2 or a prime congruent to 3 modulo 4. (End)

Examples

			Let G = (Z[i]/4Z[i])* = {i, 3i, 1, 1 + 2i, 2 + i, 2 + 3i, 3, 3 + 2i}. The possibilities for the exponent of G are 8, 4, 2 and 1. G^4 = {x^4 mod 4 : x belongs to G} = {1} and i^2 !== 1 (mod 4). Therefore, the exponent of G is greater than 2, accordingly the exponent of G is 4 and a(4) = 4.
		

Crossrefs

Equivalent of arithmetic functions in the ring of Gaussian integers (the corresponding functions in the ring of integers are in the parentheses): A062327 ("d", A000005), A317797 ("sigma", A000203), A079458 ("phi", A000010), this sequence ("psi", A002322), A086275 ("omega", A001221), A078458 ("Omega", A001222), A318608 ("mu", A008683).
Equivalent in the ring of Eisenstein integers: A319446.

Programs

  • Mathematica
    fa = FactorInteger;lamas[1] = 1;lamas[p_, s_]:= Which[Mod[p, 4]==3,p^(s-1)(p^2 - 1), Mod[p, 4] == 1, p^(s - 1)(p - 1), s ≥ 4, 2^(s - 1), s > 1, 4, s == 1, 2]; lamas[n_] := {aux = 1; Do[aux = LCM[aux, lamas[fa[n][[i, 1]], fa[n][[i, 2]]]], {i, 1, Length@fa[n]}]; aux}[[1]]; Table[lamas[n], {n, 100}]
  • PARI
    a(n)=
    {
        my(r=1, f=factor(n));
        for(j=1, #f[, 1], my(p=f[j, 1], e=f[j, 2]);
            if(p==2&&e<=2, r=lcm(r,2^e));
            if(p==2&&e>=3, r=lcm(r,2^(e-1)));
            if(p%4==1, r=lcm(r,(p-1)*p^(e-1)));
            if(p%4==3, r=lcm(r,(p^2-1)*p^(e-1)));
        );
        return(r);
    } \\ Jianing Song, Aug 29 2018

Formula

a(2^e) = 2^e if e <= 2 and 2^(e-1) if e >= 3, a(p^e) = (p - 1)*p^(e-1) if p == 1 (mod 4) and (p^2 - 1)*p^(e-1) if p == 3 (mod 4). If gcd(m, n) = 1 then a(mn) = lcm(a(m), a(n)). - Jianing Song, Aug 29 2018 [See the group structure of (Z[i]/(pi^e)Z[i])* in A316506, where pi is a prime element in Z[i]. - Jianing Song, Oct 03 2022]

A319447 a(n) is the rank of the multiplicative group of Eisenstein integers modulo n.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 2, 3, 3, 2, 1, 3, 2, 3, 2, 3, 1, 4, 2, 3, 3, 2, 1, 4, 2, 3, 3, 4, 1, 3, 2, 3, 2, 2, 3, 4, 2, 3, 3, 4, 1, 4, 2, 3, 4, 2, 1, 4, 2, 2, 2, 4, 1, 4, 2, 5, 3, 2, 1, 4, 2, 3, 5, 3, 3, 3, 2, 3, 2, 4, 1, 4, 2, 3, 2, 4, 3, 4, 2, 4, 3, 2, 1, 5, 2, 3, 2
Offset: 1

Views

Author

Jianing Song, Sep 19 2018

Keywords

Comments

The rank of a finitely generated group rank(G) is defined to be the size of the minimal generating sets of G.
Let p be an odd prime and (Z[w]/nZ[w])* be the multiplicative group of Gaussian integers modulo n, then: (Z[w]/p^e*Z[w])* = (C_((p-1)*p^(e-1)))^2 if p == 1 (mod 6); C_(p^(e-1)) X C_(p^(e-1)*(p^2-1)) if p == 5 (mod 6); (Z[w]/3^e*Z[w])* = C_3 X C_(3^(e-1)) X C_(2*3^(e-1)); (Z[w]/2Z[w])* = C_3, (Z[w]/2^e*Z[w])* = C_2 X C_(2^(e-2)) X C_(3*2^(e-1)) for e >= 2. If n = Product_{i=1..k} (p_i)^(e_i), then (Z[w]/nZ[w])* = (Z[w]/(p_1)^(e_1)*Z[w])* X (Z[w]/(p_2)^(e_2)*Z[w])* X ... X (Z[w]/(p_k)^(e_k)*Z[w])*.
The order of (Z[w]/nZ[w])* is A319445(n) and the exponent of it is A319446(n).
{a(n)} is not additive: (Z[w]/2Z[w])* = C_3, (Z[w]/25Z[w])* = C_5 X C_120, so (Z[w]/50Z[w])* = C_15 X C_120, a(50) < a(2) + a(25).
A319445(n)/A319446(n) is always an integer, and is 1 if and only if (Z[w]/nZ[w])* is cyclic, that is, rank((Z[w]/nZ[w])*) = a(n) = 0 or 1, and n has a primitive root in (Z[w]/nZ[w])*. a(n) = 1 if and only if n = 3 or a prime congruent to 2 mod 3. - Jianing Song, Jan 08 2019
From Jianing Song, Oct 03 2022: (Start)
More generally, let pi be a prime element of Z[w] of norm p or p^2 for prime p, then:
- for p == 1 (mod 6), (Z[w]/(pi^e)Z[w])* = C_((p-1)*p^(e-1));
- for p == 5 (mod 6), (Z[w]/(pi^e)Z[w])* = C_(p^(e-1)) X C_(p^(e-1)*(p^2-1));
- for p = 3, (Z[w]/(pi^e)Z[w])* = C_2 for e = 1, C_3 X C_(3^floor((e-2)/2)) X C_(2*3^ceiling((e-2)/2)) for e >= 2;
- for p = 2, (Z[w]/(pi^e)Z[w])* = C_3 for e = 1, C_2 X C_(2^(e-2)) X C_(3*2^(e-1)) for e >= 2.
For a more general result see my link below. (End)

Examples

			(Z[w]/1Z[w])* = C_1 (has rank 0);
(Z[w]/2Z[w])* = C_3 (has rank 1);
(Z[w]/3Z[w])* = C_6 (has rank 1);
(Z[w]/4Z[w])* = C_2 X C_6 (has rank 2);
(Z[w]/5Z[w])* = C_24 (has rank 1);
(Z[w]/6Z[w])* = C_3 X C_6 (has rank 2);
(Z[w]/7Z[w])* = C_6 X C_6 (has rank 2);
(Z[w]/8Z[w])* = C_2 X C_2 X C_12 (has rank 3);
(Z[w]/9Z[w])* = C_3 X C_3 X C_6 (has rank 3);
(Z[w]/10Z[w])* = C_3 X C_24 (has rank 2).
		

Crossrefs

Equivalent in the ring of Gaussian integers: A316506.

Programs

  • PARI
    rad(n) = factorback(factorint(n)[, 1]);
    grad(n)=
    {
        my(r=1, f=factor(n));
        for(j=1, #f[, 1], my(p=f[j, 1], e=f[j, 2]);
            if(p==2&e==1, r*=3);
            if(p==2&e==2, r*=12);
            if(p==2&e>=3, r*=24);
            if(p==3&e==1, r*=6);
            if(p==3&e>=2, r*=54);
            if(p%6==1, r*=(rad(p-1))^2);
            if(p%6==5&e==1, r*=rad(p^2-1));
            if(p%6==5&e>=2, r*=p^2*rad(p^2-1));
        );
        return(r);
    }
    a(n)=if(n>1, vecmax(factor(grad(n))[, 2]), 0); \\ The program is based on the facts that although rank((Z[w]/nZ[w])*) is not additive, the p-rank of (Z[w]/nZ[w])* is additive for any prime p, and that rank((Z[w]/nZ[w])*) is the maximum of the p-rank of (Z[w]/nZ[w])* where p runs through all primes. - Jianing Song, Aug 05 2019

Formula

Let p be an odd prime, then: a(p^e) = 2 if p == 1 (mod 6) or p == 5 (mod 6), e >= 2; a(p) = 1 if p == 5 (mod 6). a(3) = 1, a(3^e) = 3 for e >= 2. a(2) = 1, a(4) = 2, a(2^e) = 3 for e >= 3. [Corrected by Jianing Song, Aug 05 2019]

Extensions

Corrected by Jianing Song, Jan 12 2019
Showing 1-3 of 3 results.