cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A316523 Number of odd multiplicities minus number of even multiplicities in the canonical prime factorization of n.

This page as a plain text file.
%I A316523 #21 Oct 05 2023 04:08:05
%S A316523 0,1,1,-1,1,2,1,1,-1,2,1,0,1,2,2,-1,1,0,1,0,2,2,1,2,-1,2,1,0,1,3,1,1,
%T A316523 2,2,2,-2,1,2,2,2,1,3,1,0,0,2,1,0,-1,0,2,0,1,2,2,2,2,2,1,1,1,2,0,-1,2,
%U A316523 3,1,0,2,3,1,0,1,2,0,0,2,3,1,0,-1,2,1,1
%N A316523 Number of odd multiplicities minus number of even multiplicities in the canonical prime factorization of n.
%H A316523 Robert Israel, <a href="/A316523/b316523.txt">Table of n, a(n) for n = 1..10000</a>
%F A316523 If i and j are coprime, a(i*j) = a(i)+a(j). - _Robert Israel_, Aug 27 2018
%F A316523 From _Amiram Eldar_, Oct 05 2023: (Start)
%F A316523 Additive with a(p^e) = (-1)^(e+1).
%F A316523 a(n) = A162642(n) - A162641(n).
%F A316523 Sum_{k=1..n} a(k) = n * log(log(n)) + c * n + O(n/log(n)), where c = A077761 - 2*A179119 = -0.398962... . (End)
%p A316523 f:= proc(n) local F;
%p A316523   F:= map(t -> t[2],ifactors(n)[2]);
%p A316523   2*nops(select(type,F,odd))-nops(F);
%p A316523 end proc:
%p A316523 map(f, [$1..100]); # _Robert Israel_, Aug 27 2018
%t A316523 Table[Total[-(-1)^If[n==1,{},FactorInteger[n][[All,2]]]],{n,100}]
%o A316523 (PARI) a(n) = my(f=factor(n)); -sum(k=1, #f~, (-1)^(f[k,2])); \\ _Michel Marcus_, Jul 08 2018; corrected Jun 13 2022
%Y A316523 Cf. A000040, A000607, A071321, A100118, A112798.
%Y A316523 Cf. A187039 (where a(n)=0). - _Michel Marcus_, Jul 08 2018
%Y A316523 Cf. A077761, A162641, A162642, A179119.
%K A316523 sign,easy
%O A316523 1,6
%A A316523 _Gus Wiseman_, Jul 05 2018