cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A316526 a(n) = 122880*6^n - 307200*5^n + 264960*4^n - 90240*3^n + 9844*2^n - 122.

This page as a plain text file.
%I A316526 #12 Sep 08 2022 08:46:22
%S A316526 122,9966,210134,2741670,27930182,245220486,1953210374,14543545350,
%T A316526 103166087942,706033804806,4702595902214,30675859444230,
%U A316526 196880387684102,1247535454225926,7825081688699654,48684535015586310,300917096071974662,1850113238390115846
%N A316526 a(n) = 122880*6^n - 307200*5^n + 264960*4^n - 90240*3^n + 9844*2^n - 122.
%H A316526 Takao Komatsu, <a href="https://arxiv.org/abs/1806.05515">On poly-Euler numbers of the second kind</a>, arXiv:1806.05515 [math.NT], 2018, page 11 (Lemma 3.4).
%H A316526 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (21,-175,735,-1624,1764,-720).
%F A316526 G.f.: 2*(61 + 3702*x + 11099*x^2 - 8382*x^3 + 840*x^4)/((1 - x)*(1 - 2*x)*(1 - 3*x)*(1 - 4*x)*(1 - 5*x)*(1 - 6*x)).
%F A316526 a(n) = 21*a(n-1) - 175*a(n-2) + 735*a(n-3) - 1624*a(n-4) + 1764*a(n-5) - 720*a(n-6) for n>6.
%t A316526 Table[122880 6^n - 307200 5^n + 264960 4^n - 90240 3^n + 9844 2^n - 122, {n, 0, 20}]
%o A316526 (Magma) [122880*6^n-307200*5^n+264960*4^n-90240*3^n+9844*2^n-122: n in [0..20]];
%Y A316526 Cf. A007051, A081188, A305861, A305862, A305863.
%K A316526 nonn,easy
%O A316526 0,1
%A A316526 _Vincenzo Librandi_, Jul 06 2018