A316532 Leading least prime signatures, ordered by the underlying partitions, as in A063008.
1, 6, 30, 36, 210, 180, 2310, 216, 900, 1260, 30030, 1080, 6300, 13860, 510510, 1296, 5400, 7560, 44100, 69300, 180180, 9699690, 6480, 27000, 37800, 83160, 485100, 900900, 3063060, 223092870, 7776, 32400, 45360, 189000, 264600, 415800, 1081080, 5336100
Offset: 0
Examples
The first few partitions are [], [1,1], [1,1,1], [2,2], [1,1,1,1]. So the first few terms are 1, 2 * 3 = 6, 2 * 3 * 5 = 30, 2^2 * 3^2 = 36, 2 * 3 * 5 * 7 = 210.
Programs
-
Haskell
primes :: [Integer] primes = 2 : 3 : filter (\a -> all (not . divides a) (takeWhile (\x -> x <= a `div` 2) primes)) [4..] divides :: Integer -> Integer -> Bool divides a b = a `mod` b == 0 partitions :: [[Integer]] partitions = concat $ map (partitions_of_n) [0..] partitions_of_n :: Integer -> [[Integer]] partitions_of_n n = partitions_at_most n n partitions_at_most :: Integer -> Integer -> [[Integer]] partitions_at_most _ 0 = [[]] partitions_at_most 0 _ = [] partitions_at_most m n = concat $ map (\k -> map ([k] ++) (partitions_at_most k (n-k))) ( reverse [1..(min m n)]) prime_signature :: [Integer] -> Integer prime_signature p = product $ zipWith (^) primes p seq :: [Integer] seq = map prime_signature $ filter compare_first_second partitions where compare_first_second p | length p == 0 = True | length p == 1 = False | otherwise = p!!0 == p!!1
Comments