cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A316537 Number of cyclic subgroups of the group SL(2, Z(n)), counting conjugates as distinct.

This page as a plain text file.
%I A316537 #13 Jul 10 2018 18:43:23
%S A316537 1,5,13,28,49,73,116,176,202,265,378,464,550,636,842,936,1041,1183,
%T A316537 1486,1712,2082,2055,2120,3088,2114,3023,2503,4200,4238,4862,4902,
%U A316537 4648,6564,5749,7434,7688,6331,8190,9880,11344,10172,12066,9378,13224,14168,11612
%N A316537 Number of cyclic subgroups of the group SL(2, Z(n)), counting conjugates as distinct.
%H A316537 Andrew Howroyd, <a href="/A316537/b316537.txt">Table of n, a(n) for n = 1..100</a>
%F A316537 a(n) = Sum_{k=1..A316563(n)} 1/phi(A316564(n, k)).
%e A316537 Case n=2: generators of the 5 cyclic groups are:
%e A316537   [ 1 0 ]   [0 1]   [1 0]   [1 1]   [0 1]
%e A316537   [ 0 1 ]   [1 0]   [1 1]   [0 1]   [1 1]
%o A316537 (GAP) Concatenation([1], List([2..10], n->Sum( Filtered( ConjugacyClassesSubgroups( SL(2, Integers mod n)), x->IsCyclic( Representative(x))), Size)));
%o A316537 (PARI)
%o A316537 MatOrder(M)={my(id=matid(#M), k=1, N=M); while(N<>id, k++;N=N*M); k}
%o A316537 a(n)={sum(a=0, n-1, sum(b=0, n-1, sum(c=0, n-1, sum(d=0, n-1, my(M=Mod([a, b; c, d], n)); if(matdet(M)==1, 1/eulerphi(MatOrder(M)))))))}
%Y A316537 Cf. A000056, A062314, A316536, A316553, A316560, A316563, A316564.
%K A316537 nonn
%O A316537 1,2
%A A316537 _Andrew Howroyd_, Jul 06 2018