cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A316557 Number of distinct integer averages of subsets of the integer partition with Heinz number n.

This page as a plain text file.
%I A316557 #9 Oct 05 2018 11:10:04
%S A316557 0,1,1,1,1,2,1,1,1,3,1,2,1,2,2,1,1,2,1,3,3,3,1,2,1,2,1,3,1,3,1,1,2,3,
%T A316557 2,2,1,2,3,3,1,4,1,3,2,3,1,2,1,3,2,2,1,2,3,3,3,2,1,3,1,3,3,1,2,4,1,4,
%U A316557 2,4,1,2,1,2,2,2,2,5,1,3,1,3,1,4,3,2,3,4,1,3,3,3,2,3,2,2,1,3,3,3,1,4,1,2,3
%N A316557 Number of distinct integer averages of subsets of the integer partition with Heinz number n.
%C A316557 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
%H A316557 Antti Karttunen, <a href="/A316557/b316557.txt">Table of n, a(n) for n = 1..65537</a>
%F A316557 a(n) <= A316314(n). - _Antti Karttunen_, Sep 25 2018
%e A316557 The a(78) = 5 distinct integer averages of subsets of (6,2,1) are {1, 2, 3, 4, 6}.
%t A316557 Table[Length[Select[Union[Mean/@Subsets[If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]]],IntegerQ]],{n,100}]
%o A316557 (PARI)
%o A316557 up_to = 65537;
%o A316557 A056239(n) = { my(f); if(1==n, 0, f=factor(n); sum(i=1, #f~, f[i,2] * primepi(f[i,1]))); }
%o A316557 v056239 = vector(up_to,n,A056239(n));
%o A316557 A316557(n) = { my(m=Map(),s,k=0); fordiv(n,d,if((d>1)&&(1==denominator(s = v056239[d]/bigomega(d)))&&!mapisdefined(m,s), mapput(m,s,s); k++)); (k); }; \\ _Antti Karttunen_, Sep 25 2018
%Y A316557 Cf. A056239, A067538, A122768, A237984, A296150, A316313, A316314, A316440, A316555, A316556.
%K A316557 nonn
%O A316557 1,6
%A A316557 _Gus Wiseman_, Jul 06 2018
%E A316557 More terms from _Antti Karttunen_, Sep 25 2018