cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A316560 Number of cyclic subgroups of the group GL(2, Z(n)), counting conjugates as distinct.

This page as a plain text file.
%I A316560 #7 Jul 06 2018 23:13:36
%S A316560 1,5,28,62,176,148,610,696,1252,920,2296,1972,4874,3523,6040,6320,
%T A316560 8136,7348,14984,13568,22124,11920,17396,23952,29846,28172,38044,
%U A316560 47656,47282,32908,75036,53520,71768,42312,145852,99892,123524,88456,187036,179200,152290
%N A316560 Number of cyclic subgroups of the group GL(2, Z(n)), counting conjugates as distinct.
%F A316560 a(n) = Sum_{k=1..A316565(n)} 1/phi(A316566(n,k)).
%o A316560 (GAP) Concatenation([1], List([2..7], n->Sum( Filtered( ConjugacyClassesSubgroups( GL(2, Integers mod n)), x->IsCyclic( Representative(x))), Size)));
%o A316560 (PARI)
%o A316560 MatOrder(M)={my(id=matid(#M), k=1, N=M); while(N<>id, k++;N=N*M); k}
%o A316560 a(n)={sum(a=0, n-1, sum(b=0, n-1, sum(c=0, n-1, sum(d=0, n-1, my(M=Mod([a, b; c, d], n)); if(gcd(lift(matdet(M)), n)==1, 1/eulerphi(MatOrder(M)))))))}
%Y A316560 Cf. A053651, A066947, A316537, A316559, A316565, A316566.
%K A316560 nonn
%O A316560 1,2
%A A316560 _Andrew Howroyd_, Jul 06 2018