This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A316560 #7 Jul 06 2018 23:13:36 %S A316560 1,5,28,62,176,148,610,696,1252,920,2296,1972,4874,3523,6040,6320, %T A316560 8136,7348,14984,13568,22124,11920,17396,23952,29846,28172,38044, %U A316560 47656,47282,32908,75036,53520,71768,42312,145852,99892,123524,88456,187036,179200,152290 %N A316560 Number of cyclic subgroups of the group GL(2, Z(n)), counting conjugates as distinct. %F A316560 a(n) = Sum_{k=1..A316565(n)} 1/phi(A316566(n,k)). %o A316560 (GAP) Concatenation([1], List([2..7], n->Sum( Filtered( ConjugacyClassesSubgroups( GL(2, Integers mod n)), x->IsCyclic( Representative(x))), Size))); %o A316560 (PARI) %o A316560 MatOrder(M)={my(id=matid(#M), k=1, N=M); while(N<>id, k++;N=N*M); k} %o A316560 a(n)={sum(a=0, n-1, sum(b=0, n-1, sum(c=0, n-1, sum(d=0, n-1, my(M=Mod([a, b; c, d], n)); if(gcd(lift(matdet(M)), n)==1, 1/eulerphi(MatOrder(M)))))))} %Y A316560 Cf. A053651, A066947, A316537, A316559, A316565, A316566. %K A316560 nonn %O A316560 1,2 %A A316560 _Andrew Howroyd_, Jul 06 2018