cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A316563 Maximum order of an element in the special linear group SL(2, Z(n)).

This page as a plain text file.
%I A316563 #9 Jul 10 2018 18:43:40
%S A316563 1,3,6,6,10,12,14,8,18,30,22,12,26,42,30,16,34,18,38,30,42,66,46,24,
%T A316563 50,78,54,42,58,60,62,32,66,102,70,36,74,114,78,40,82,84,86,66,90,138,
%U A316563 94,48,98,150,102,78,106,54,110,56,114,174,118,60,122,186,126
%N A316563 Maximum order of an element in the special linear group SL(2, Z(n)).
%H A316563 Andrew Howroyd, <a href="/A316563/b316563.txt">Table of n, a(n) for n = 1..100</a>
%o A316563 (GAP) Concatenation([1], List([2..15], n->Maximum(List(SL(2, Integers mod n), Order))));
%o A316563 (PARI)
%o A316563 MatOrder(M)={my(id=matid(#M), k=1, N=M); while(N<>id, k++;N=N*M); k}
%o A316563 a(n)={my(m=0); for(a=0, n-1, for(b=0, n-1, for(c=0, n-1, for(d=0, n-1, my(M=Mod([a, b; c, d], n)); if(matdet(M)==1, m=max(m, MatOrder(M))))))); m}
%Y A316563 Row lengths of A316564.
%Y A316563 Cf. A000056, A316537, A316565.
%K A316563 nonn
%O A316563 1,2
%A A316563 _Andrew Howroyd_, Jul 06 2018