This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A316564 #11 Jul 10 2018 18:44:14 %S A316564 1,1,3,2,1,1,8,6,0,8,1,7,8,24,0,8,1,1,20,30,24,20,0,0,0,24,1,7,26,24, %T A316564 0,74,0,0,0,0,0,12,1,1,56,42,0,56,48,84,0,0,0,0,0,48,1,15,32,144,0,96, %U A316564 0,96,1,1,98,54,0,98,0,0,144,0,0,108,0,0,0,0,0,144 %N A316564 Triangle read by rows: T(n,k) is the number of elements of the group SL(2, Z(n)) with order k, 1 <= k <= A316563(n). %C A316564 For coprime p,q the group SL(p*q, Z(n)) is isomorphic to the direct product of the two groups SL(p, Z(n)) and SL(q, Z(n)). %H A316564 Andrew Howroyd, <a href="/A316564/b316564.txt">Table of n, a(n) for n = 1..3478</a> (first 60 rows) %F A316564 T(p*q,k) = Sum_{i>0, j>0, k=lcm(i, j)} T(p, i)*T(q, j) for gcd(p, q)=1. %F A316564 T(n,k) = Sum_{d|k} mu(d/k) A316586(n,d). %e A316564 Triangle begins: %e A316564 1; %e A316564 1, 3, 2; %e A316564 1, 1, 8, 6, 0, 8; %e A316564 1, 7, 8, 24, 0, 8; %e A316564 1, 1, 20, 30, 24, 20, 0, 0, 0, 24; %e A316564 1, 7, 26, 24, 0, 74, 0, 0, 0, 0, 0, 12; %e A316564 1, 1, 56, 42, 0, 56, 48, 84, 0, 0, 0, 0, 0, 48; %e A316564 1, 15, 32, 144, 0, 96, 0, 96; %e A316564 1, 1, 98, 54, 0, 98, 0, 0, 144, 0, 0, 108, 0, 0, 0, 0, 0, 144; %e A316564 ... %o A316564 (PARI) %o A316564 MatOrder(M)={my(id=matid(#M), k=1, N=M); while(N<>id, k++;N=N*M); k} %o A316564 row(n)={my(L=List()); for(a=0, n-1, for(b=0, n-1, for(c=0, n-1, for(d=0, n-1, my(M=Mod([a, b; c, d], n)); if(matdet(M)==1, my(t=MatOrder(M)); while(#L<t,listput(L,0)); L[t]++ ))))); Vec(L)} %o A316564 for(n=1, 9, print(row(n))); %Y A316564 Column 2 is A316553. %Y A316564 Row sums are A000056. %Y A316564 Cf. A316537, A316566, A316586. %K A316564 nonn,tabf %O A316564 1,3 %A A316564 _Andrew Howroyd_, Jul 06 2018