cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A316565 Maximum order of an element of the general linear group GL(2, Z(n)).

This page as a plain text file.
%I A316565 #22 Dec 19 2019 22:08:28
%S A316565 1,3,8,6,24,24,48,12,24,60,120,24,168,48,60,24,288,24,360,60,168,330,
%T A316565 528,24,120,168,72,84,840,120,960,48,440,816,420,36,1368,360,312,60,
%U A316565 1680,168,1848,330,180,1518,2208,48,336,300,816,168,2808,72,1320,168
%N A316565 Maximum order of an element of the general linear group GL(2, Z(n)).
%F A316565 Conjecture: a(p) = (p-1)*(p+1) for prime p.
%F A316565 From _Robert Israel_, Dec 19 2019: (Start)
%F A316565 The conjecture is true.  In fact for T in GL(2,Z(p)), the order of T divides p*(p-1) if the characteristic polynomial of T splits over Z(p) and p^2-1 if it doesn't; moreover, if T is the companion matrix of the minimal polynomial of a primitive element of GF(p^2), the order is p^2-1.
%F A316565 a(p^k) <= (p^2-1) p^(k-1).
%F A316565 If m and n are coprime, a(m*n) <= a(m)*a(n). (End)
%o A316565 (GAP) Concatenation([1], List([2..10], n->Maximum(List(GL(2, Integers mod n), Order))));
%o A316565 (PARI)
%o A316565 MatOrder(M)={my(id=matid(#M), k=1, N=M); while(N<>id, k++;N=N*M); k}
%o A316565 a(n)={my(m=0); for(a=0, n-1, for(b=0, n-1, for(c=0, n-1, for(d=0, n-1, my(M=Mod([a, b; c, d], n)); if(gcd(lift(matdet(M)), n)==1, m=max(m, MatOrder(M))))))); m}
%Y A316565 Row lengths of A316566.
%Y A316565 Cf. A000252, A316563.
%K A316565 nonn
%O A316565 1,2
%A A316565 _Andrew Howroyd_, Jul 06 2018