cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A316584 Array read by antidiagonals: T(n,k) is the number of elements x in GL(2,Z_n) with x^k == I mod n where I is the identity matrix.

This page as a plain text file.
%I A316584 #11 Jul 10 2018 21:17:24
%S A316584 1,1,1,1,4,1,1,3,14,1,1,4,9,28,1,1,1,20,9,32,1,1,6,1,64,21,56,1,1,1,
%T A316584 30,1,184,27,58,1,1,4,1,60,25,80,171,176,1,1,3,32,1,72,1,100,33,110,1,
%U A316584 1,4,9,64,1,180,1,640,297,128,1,1,1,14,9,224,1,846,1,164,63,134,1
%N A316584 Array read by antidiagonals: T(n,k) is the number of elements x in GL(2,Z_n) with x^k == I mod n where I is the identity matrix.
%C A316584 All columns are multiplicative.
%C A316584 Some terms of this sequence may also be computed using a formula given by Kent Morrison (section 1.11 and 2.5 in the reference). See A053725 for a PARI implementation.
%H A316584 Kent E. Morrison, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL9/Morrison/morrison37.html">Integer Sequences and Matrices Over Finite Fields</a>, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
%F A316584 T(n,k) = Sum_{d|k} A316566(n, d).
%F A316584 Conjecture: T(p,p) = p^2 for p prime.
%e A316584 Array begins:
%e A316584 ======================================================
%e A316584   n\k | 1   2   3    4    5    6   7    8   9   10
%e A316584 ------+-----------------------------------------------
%e A316584     1 | 1   1   1    1    1    1   1    1   1    1 ...
%e A316584     2 | 1   4   3    4    1    6   1    4   3    4 ...
%e A316584     3 | 1  14   9   20    1   30   1   32   9   14 ...
%e A316584     4 | 1  28   9   64    1   60   1   64   9   28 ...
%e A316584     5 | 1  32  21  184   25   72   1  224  21   80 ...
%e A316584     6 | 1  56  27   80    1  180   1  128  27   56 ...
%e A316584     7 | 1  58 171  100    1  846  49  184 171   58 ...
%e A316584     8 | 1 176  33  640    1  432   1 1024  33  176 ...
%e A316584     9 | 1 110 297  164    1 1566   1  272 729  110 ...
%e A316584    10 | 1 128  63  736   25  432   1  896  63  320 ...
%e A316584    11 | 1 134 111  244 1325  354   1  464 111 5950 ...
%e A316584    12 | 1 392  81 1280    1 1800   1 2048  81  392 ...
%e A316584    13 | 1 184 549 1096    1 2736 469 1408 549  184 ...
%e A316584    14 | 1 232 513  400    1 5076  49  736 513  232 ...
%e A316584    15 | 1 448 189 3680   25 2160   1 7168 189 1120 ...
%e A316584    ...
%Y A316584 Column 2 is A066907.
%Y A316584 Cf. A053725, A316566, A316586.
%K A316584 nonn,mult,tabl
%O A316584 1,5
%A A316584 _Andrew Howroyd_, Jul 07 2018