cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A316586 Array read by antidiagonals: T(n,k) is the number of elements x in SL(2,Z_n) with x^k == I mod n where I is the identity matrix.

This page as a plain text file.
%I A316586 #7 Jul 10 2018 21:17:33
%S A316586 1,1,1,1,4,1,1,3,2,1,1,4,9,8,1,1,1,8,9,2,1,1,6,1,32,21,8,1,1,1,18,1,
%T A316586 32,27,2,1,1,4,1,24,25,32,57,16,1,1,3,8,1,42,1,44,33,2,1,1,4,9,32,1,
%U A316586 108,1,160,99,8,1,1,1,2,9,32,1,114,1,56,63,2,1
%N A316586 Array read by antidiagonals: T(n,k) is the number of elements x in SL(2,Z_n) with x^k == I mod n where I is the identity matrix.
%C A316586 All columns are multiplicative.
%F A316586 T(n,k) = Sum_{d|k} A316564(n, d).
%F A316586 Conjecture: T(p,p) = p^2 for p prime.
%e A316586 Array begins:
%e A316586 ================================================
%e A316586   n\k | 1  2   3   4   5   6   7   8   9  10
%e A316586 ------+-----------------------------------------
%e A316586     1 | 1  1   1   1   1   1   1   1   1   1 ...
%e A316586     2 | 1  4   3   4   1   6   1   4   3   4 ...
%e A316586     3 | 1  2   9   8   1  18   1   8   9   2 ...
%e A316586     4 | 1  8   9  32   1  24   1  32   9   8 ...
%e A316586     5 | 1  2  21  32  25  42   1  32  21  50 ...
%e A316586     6 | 1  8  27  32   1 108   1  32  27   8 ...
%e A316586     7 | 1  2  57  44   1 114  49 128  57   2 ...
%e A316586     8 | 1 16  33 160   1 144   1 256  33  16 ...
%e A316586     9 | 1  2  99  56   1 198   1  56 243   2 ...
%e A316586    10 | 1  8  63 128  25 252   1 128  63 200 ...
%e A316586    11 | 1  2 111 112 265 222   1 112 111 530 ...
%e A316586    12 | 1 16  81 256   1 432   1 256  81  16 ...
%e A316586    13 | 1  2 183 184   1 366 469 184 183   2 ...
%e A316586    14 | 1  8 171 176   1 684  49 512 171   8 ...
%e A316586    15 | 1  4 189 256  25 756   1 256 189 100 ...
%e A316586    ...
%Y A316586 Cf. A316564, A316584.
%K A316586 nonn,tabl,mult
%O A316586 1,5
%A A316586 _Andrew Howroyd_, Jul 07 2018