A316606 Decimal expansion of the sixth smallest known Salem number.
1, 2, 1, 9, 7, 2, 0, 8, 5, 9, 0, 4, 0, 3, 1, 1, 8, 4, 4, 1, 6, 9, 6, 0, 6, 7, 6, 0, 4, 1, 4, 6, 7, 7, 9, 4, 4, 3, 9, 0, 4, 1, 5, 5, 0, 5, 5, 4, 1, 5, 6, 9, 6, 7, 8, 2, 8, 7, 9, 7, 4, 4, 1, 7, 8, 7, 3, 3, 8, 4, 6, 4, 5, 9, 9, 0, 8, 3, 9, 0, 6, 5, 8, 3, 5, 5, 3, 9, 3, 2, 0, 7, 8, 5, 1, 6, 2, 5, 9, 5, 7, 8
Offset: 1
Examples
1.219720859040311844169606760414677944390415505541569678287974417873...
Links
- M. J. Mossinghoff, Small Salem Numbers
- Eric Weisstein's MathWorld, Salem Constants.
- Wikipedia, Salem number
- Index entries for algebraic numbers, degree 18.
Crossrefs
Programs
-
Mathematica
c1 = {1, -1, 0, 0, 0, 0, 0, 0, -1, 1}; c2 = Join[c1, Reverse[Most[c1]]]; p = (x^Range[0, Length[c2] - 1]).c2; sigma6 = Root[p, x, 2]; RealDigits[sigma6, 10, 102][[1]]
-
PARI
polrootsreal(1 - x - x^8 + x^9 - x^10 - x^17 + x^18)[2] \\ Charles R Greathouse IV, Feb 11 2025
Formula
Equals root of p = 1 - x - x^8 + x^9 - x^10 - x^17 + x^18 with largest absolute value.