A316609 Decimal expansion of the ninth smallest known Salem number.
1, 2, 3, 5, 6, 6, 4, 5, 8, 0, 3, 8, 9, 7, 4, 7, 3, 0, 8, 1, 0, 5, 1, 6, 9, 3, 5, 1, 5, 3, 1, 2, 6, 3, 4, 7, 9, 7, 2, 3, 5, 1, 0, 0, 4, 2, 7, 4, 6, 2, 3, 9, 0, 7, 7, 6, 5, 0, 4, 3, 8, 0, 7, 7, 2, 0, 6, 3, 1, 1, 9, 2, 4, 9, 4, 0, 2, 7, 8, 1, 4, 9, 8, 8, 9, 1, 6, 6, 0, 7, 4, 0, 4, 2, 6, 3, 8, 5, 9, 2, 5
Offset: 1
Examples
1.2356645803897473081051693515312634797235100427462390776504380772063...
Links
- M. J. Mossinghoff, Small Salem Numbers
- Eric Weisstein's MathWorld, Salem Constants.
- Wikipedia, Salem number
- Index entries for algebraic numbers, degree 22.
Crossrefs
Programs
-
Mathematica
c1 = {1, 0, -1, -1, 0, 0, 0, 1, 1, 0, -1, -1}; c2 = Join[c1, Reverse[Most[c1]]]; p = (x^Range[0, Length[c2] - 1]).c2; sigma9 = Root[p, x, 2]; RealDigits[sigma9, 10, 101][[1]]
-
PARI
polrootsreal(1 - x^2 - x^3 + x^7 + x^8 - x^10 - x^11 - x^12 + x^14 + x^15 - x^19 - x^20 + x^22)[2] \\ Charles R Greathouse IV, Feb 11 2025
Formula
p = 1 - x^2 - x^3 + x^7 + x^8 - x^10 - x^11 - x^12 + x^14 + x^15 - x^19 - x^20 + x^22.