This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A316667 #46 Jul 16 2020 18:31:16 %S A316667 1,10,3,6,9,4,7,2,5,8,11,14,29,32,15,12,27,24,45,20,23,44,41,18,35,38, %T A316667 19,16,33,30,53,26,47,22,43,70,21,40,17,34,13,28,25,46,75,42,69,104, %U A316667 37,62,95,58,55,86,51,48,77,114,73,108,151,68,103,64,67,36 %N A316667 Squares visited by a knight moving on a spirally numbered board always to the lowest available unvisited square. %C A316667 Board is numbered with the square spiral: %C A316667 . %C A316667 17--16--15--14--13 . %C A316667 | | . %C A316667 18 5---4---3 12 . %C A316667 | | | | . %C A316667 19 6 1---2 11 . %C A316667 | | | . %C A316667 20 7---8---9--10 . %C A316667 | . %C A316667 21--22--23--24--25--26 %C A316667 . %C A316667 This sequence is finite: At step 2016, square 2084 is visited, after which there are no unvisited squares within one knight move. %H A316667 Daniël Karssen, <a href="/A316667/b316667.txt">Table of n, a(n) for n = 1..2016</a> %H A316667 Daniël Karssen, <a href="/A316667/a316667.svg">Figure showing the first 60 steps of the sequence </a> %H A316667 Daniël Karssen, <a href="/A316667/a316667_1.svg">Figure showing the complete sequence</a> %H A316667 Daniël Karssen, <a href="/A316667/a316667.m.txt">MATLAB script to generate the complete sequence</a> %H A316667 N. J. A. Sloane and Brady Haran, <a href="https://www.youtube.com/watch?v=RGQe8waGJ4w">The Trapped Knight</a>, Numberphile video (2019) %F A316667 a(n) = A316328(n-1) + 1. %o A316667 (PARI) A316667(n)=A316328(n-1)+1 \\ _M. F. Hasler_, Nov 06 2019 %Y A316667 Cf. A316328 (same starting at 0), A329022 (same with diamond-shaped spiral), A316588 (variant on board with x,y >= 0). %Y A316667 Cf. A326924 (choose square closest to the origin), A328908 (using taxicab distance), A328909 (using sup norm); A323808, A323809. %Y A316667 The (x,y) coordinates of square k are (A174344(k), A274923(k)). %K A316667 nonn,fini,full,look %O A316667 1,2 %A A316667 _Daniël Karssen_, Jul 10 2018, following a suggestion from _N. J. A. Sloane_, Jul 09 2018