A316671 Squares visited by moving diagonally one square on a diagonally numbered board and moving to the lowest available unvisited square at each step.
1, 5, 4, 12, 11, 23, 22, 38, 37, 57, 56, 80, 79, 107, 106, 138, 137, 173, 172, 212, 211, 255, 254, 302, 301, 353, 352, 408, 407, 467, 466, 530, 529, 597, 596, 668, 667, 743, 742, 822, 821, 905, 904, 992, 991, 1083, 1082, 1178, 1177, 1277, 1276, 1380, 1379
Offset: 1
Links
- Daniël Karssen, Table of n, a(n) for n = 1..10000
- Daniël Karssen, Figure showing the first 6 steps of the sequence
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
Programs
-
Mathematica
CoefficientList[ Series[-(2x^4 - 3x^2 + 4x + 1)/((x - 1)^3 (x + 1)^2), {x, 0, 52}], x] (* or *) LinearRecurrence[{1, 2, -2, -1, 1}, {1, 5, 4, 12, 11}, 53] (* Robert G. Wilson v, Jul 18 2018 *)
-
PARI
Vec(x*(1 + 4*x - 3*x^2 + 2*x^4) / ((1 - x)^3*(1 + x)^2) + O(x^40)) \\ Colin Barker, Jul 18 2018
Formula
From Colin Barker, Jul 18 2018: (Start)
G.f.: x*(1 + 4*x - 3*x^2 + 2*x^4) / ((1 - x)^3*(1 + x)^2).
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n>5.
a(n) = (n^2 + n + 4)/2 for n even.
a(n) = (n^2 - n + 2)/2 for n odd.
(End)
Comments